IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p1587-1589.html
   My bibliography  Save this article

The number of elementary particles in the standard model from purely number theoretical considerations

Author

Listed:
  • Marek-Crnjac, L.

Abstract

In various recent formal and informal lectures and discussions Prof. M.S. El Naschie expressed the sentiment that the 496 of E8E8 being a perfect number is not a coincidence and there is deep number theoretical connections to physics in this case.

Suggested Citation

  • Marek-Crnjac, L., 2009. "The number of elementary particles in the standard model from purely number theoretical considerations," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1587-1589.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1587-1589
    DOI: 10.1016/j.chaos.2008.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2009. "E-eight exceptional Lie groups, Fibonacci lattices and the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1340-1343.
    2. El Naschie, M.S., 2006. "Superstrings, entropy and the elementary particles content of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 48-54.
    3. El Naschie, M.S., 2009. "A simple direct connection between superstrings and E8 unification," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1329-1330.
    4. Naschie, M.S.El, 2005. "Deriving the essential features of the standard model from the general theory of relativity," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 941-946.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek-Crnjac, L., 2008. "The connection between the electromagnetic fine structure constant α¯0 and the monster Lie algebra," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 257-262.
    2. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    3. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    4. Marek-Crnjac, L., 2007. "The fundamental coupling constants of physics in connection with the dimension of the special orthogonal and unitary groups," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1382-1386.
    5. Yang, Ciann-Dong, 2006. "On modeling and visualizing single-electron spin motion," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 41-50.
    6. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    7. Murdzek, R., 2007. "A direct link between large-scale structure and cosmic strings," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 748-753.
    8. Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
    9. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    10. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    11. Kubra Gul, 2019. "On Bi-periodic Jacobsthal and Jacobsthal-Lucas Quaternions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(2), pages 44-52, April.
    12. Salarieh, Hassan & Alasty, Aria, 2009. "Chaos control in an economic model via minimum entropy strategy," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 839-847.
    13. Januário, Cristina & Grácio, Clara & Duarte, Jorge, 2009. "Measuring complexity in a business cycle model of the Kaldor type," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2890-2903.
    14. El Naschie, M.S., 2009. "On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2725-2732.
    15. Marek-Crnjac, L., 2008. "Exceptional and semi simple Lie groups hierarchies and the maximum number of elementary particles beyond the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 1-5.
    16. Ma, Dongkui & Wu, Min & Liu, Cuijun, 2008. "The entropies and multifractal spectrum of some compact systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 840-851.
    17. Naschie, M.S. El, 2006. "Holographic correspondence and quantum gravity in E-infinity spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 871-875.
    18. El Naschie, M.S., 2008. "The internal dynamics of the exceptional Lie symmetry groups hierarchy and the coupling constants of unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1031-1038.
    19. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    20. Liu, Cheng-shi, 2009. "Nonsymmetric entropy and maximum nonsymmetric entropy principle," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2469-2474.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1587-1589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.