IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i1p410-413.html
   My bibliography  Save this article

Cryptanalysis of a computer cryptography scheme based on a filter bank

Author

Listed:
  • Arroyo, David
  • Li, Chengqing
  • Li, Shujun
  • Alvarez, Gonzalo

Abstract

This paper analyzes the security of a recently-proposed signal encryption scheme based on a filter bank. A very critical weakness of this new signal encryption procedure is exploited in order to successfully recover the associated secret key.

Suggested Citation

  • Arroyo, David & Li, Chengqing & Li, Shujun & Alvarez, Gonzalo, 2009. "Cryptanalysis of a computer cryptography scheme based on a filter bank," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 410-413.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:410-413
    DOI: 10.1016/j.chaos.2008.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908000313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Álvarez, G. & Li, Shujun & Montoya, F. & Pastor, G. & Romera, M., 2005. "Breaking projective chaos synchronization secure communication using filtering and generalized synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 775-783.
    2. Ling, Bingo Wing-Kuen & Ho, Charlotte Yuk-Fan & Tam, Peter Kwong-Shun, 2007. "Chaotic filter bank for computer cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 817-824.
    3. Li, Shujun & Álvarez, Gonzalo & Chen, Guanrong, 2005. "Breaking a chaos-based secure communication scheme designed by an improved modulation method," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 109-120.
    4. Alvarez, Gonzalo, 2005. "Security problems with a chaos-based deniable authentication scheme," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 7-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaher, Ashraf A., 2009. "An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2804-2814.
    2. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    3. Han, Song, 2008. "Security of a key agreement protocol based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 764-768.
    4. Gao, Tiegang & Gu, Qiaolun & Emmanuel, Sabu, 2009. "A novel image authentication scheme based on hyper-chaotic cell neural network," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 548-553.
    5. Han, S. & Chang, E., 2009. "Chaotic map based key agreement with/out clock synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1283-1289.
    6. Akhavan, A. & Samsudin, A. & Akhshani, A., 2009. "Hash function based on piecewise nonlinear chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1046-1053.
    7. Zheng, G. & Boutat, D. & Floquet, T. & Barbot, J.P., 2009. "Secure communication based on multi-input multi-output chaotic system with large message amplitude," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1510-1517.
    8. Zhiqin Qiao & Xianyi Li, 2014. "Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(3), pages 264-283, May.
    9. Qi, Guoyuan & Chen, Guanrong & Zhang, Yuhui, 2008. "On a new asymmetric chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 409-423.
    10. Qi, Guoyuan & van Wyk, Barend Jacobus & van Wyk, Michaël Antonie, 2009. "A four-wing attractor and its analysis," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2016-2030.
    11. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    12. Tutueva, Aleksandra V. & Moysis, Lazaros & Rybin, Vyacheslav G. & Kopets, Ekaterina E. & Volos, Christos & Butusov, Denis N., 2022. "Fast synchronization of symmetric Hénon maps using adaptive symmetry control," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Li, Lixiang & Peng, Haipeng & Yang, Yixian & Wang, Xiangdong, 2009. "On the chaotic synchronization of Lorenz systems with time-varying lags," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 783-794.
    14. Xiang, Tao & Wong, Kwok-Wo & Liao, Xiaofeng, 2009. "On the security of a novel key agreement protocol based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 672-675.
    15. Li, Ping & Li, Zhong & Halang, Wolfgang A. & Chen, Guanrong, 2007. "A stream cipher based on a spatiotemporal chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1867-1876.
    16. Behnia, S. & Akhshani, A. & Akhavan, A. & Mahmodi, H., 2009. "Applications of tripled chaotic maps in cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 505-519.
    17. Qi, Guoyuan & Chen, Guanrong & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Zhang, Yuhui, 2008. "A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 705-721.
    18. Chu, Yan-Dong & Chang, Ying-Xiang & Zhang, Jian-Gang & Li, Xian-Feng & An, Xin-Lei, 2009. "Full state hybrid projective synchronization in hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1502-1510.
    19. Tigan, Gheorghe & Opriş, Dumitru, 2008. "Analysis of a 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1315-1319.
    20. Persohn, K.J. & Povinelli, R.J., 2012. "Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 238-245.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:410-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.