IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v35y2008i4p684-687.html

Roots lattice hierarchies of exceptional Lie symmetry groups and the elementary particles content of the standard model

Author

Listed:
  • El Naschie, M.S.

Abstract

We review ‘t Hooft’s counting of elementary particles of the standard model then extend it in the light of a new interpretation gained from a hierarchy of roots system belonging to the exceptional Lie symmetry groups. The final result, namely 69 particles is confirmed using Ji-Huan He’s 6 and 10 dimensional hypercube.

Suggested Citation

  • El Naschie, M.S., 2008. "Roots lattice hierarchies of exceptional Lie symmetry groups and the elementary particles content of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 684-687.
  • Handle: RePEc:eee:chsofr:v:35:y:2008:i:4:p:684-687
    DOI: 10.1016/j.chaos.2007.07.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907005991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.07.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    2. El Naschie, M.S., 2007. "Hilbert space, Poincaré dodecahedron and golden mean transfiniteness," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 787-793.
    3. El Naschie, M.S., 2005. "Determining the number of Higgs particles starting from general relativity and various other field theories," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 711-726.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Naschie, M.S., 2008. "Eliminating gauge anomalies via a “point-less” fractal Yang–Mills theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1332-1335.
    2. Naschie, M.S. El, 2008. "The standard model physical degrees of freedom interpretation of the electromagnetic fine structure coupling α¯o≃1/137," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 609-611.
    3. Marek-Crnjac, L., 2008. "From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1279-1288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
    2. He, Ji-Huan, 2009. "Hilbert cube model for fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2754-2759.
    3. Gottlieb, I. & Agop, M. & Enache, V., 2009. "Games with Cantor’s dust," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 940-945.
    4. El Naschie, M.S., 2008. "Exceptional Lie groups hierarchy and some fundamental high energy physics equations," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 82-84.
    5. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    6. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    7. El Naschie, M.S., 2008. "Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 662-668.
    8. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    9. El Naschie, M.S., 2007. "SO(10) grand unification in a fuzzy setting," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 958-961.
    10. El-Okaby, Ayman A., 2006. "Estimating the mass of the Higgs boson (mH) using the mass formula of E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 259-262.
    11. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.
    12. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    13. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    14. El Naschie, M.S., 2007. "From symmetry to particles," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 427-430.
    15. Estrada, Ernesto, 2007. "Graphs (networks) with golden spectral ratio," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1168-1182.
    16. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    17. Falcón, Sergio & Plaza, Ángel, 2009. "On k-Fibonacci sequences and polynomials and their derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1005-1019.
    18. Marek-Crnjac, L., 2008. "The connection between the order of simple groups and the maximum number of elementary particles," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 641-644.
    19. Agop, M. & Paun, V. & Harabagiu, Anca, 2008. "El Naschie’s ε(∞) theory and effects of nanoparticle clustering on the heat transport in nanofluids," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1269-1278.
    20. El Naschie, M.S., 2008. "Kaluza–Klein unification – Some possible extensions," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 16-22.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:35:y:2008:i:4:p:684-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.