IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i3p1081-1095.html
   My bibliography  Save this article

Study of a class of hybrid-time systems

Author

Listed:
  • Cervantes, I.
  • Femat, R.
  • Leyva-Ramos, J.

Abstract

The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained.

Suggested Citation

  • Cervantes, I. & Femat, R. & Leyva-Ramos, J., 2007. "Study of a class of hybrid-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1081-1095.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:3:p:1081-1095
    DOI: 10.1016/j.chaos.2005.11.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905011331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiou, Juing-Shian & Cheng, Chun-Ming, 2009. "Stabilization analysis of the switched discrete-time systems using Lyapunov stability theorem and genetic algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 751-759.
    2. Xiong, Lianglin & Zhong, Shouming & Ye, Mao & Wu, Shiliang, 2009. "New stability and stabilization for switched neutral control systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1800-1811.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:3:p:1081-1095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.