IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i5p1054-1075.html
   My bibliography  Save this article

Nonlinear dynamics in the relativistic field equation

Author

Listed:
  • Tanaka, Yosuke
  • Mizuno, Yuji
  • Kado, Tatsuhiko
  • Zhao, Hua-An

Abstract

We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G˙/G>0) and open (ζ=−1) universe. In other cases (h≦0, ζ=0 and ζ=+1), there occurs non-chaotic behaviors. We have shown the following properties of the Friedmann chaos: (1) the sensitive dependence of solutions on the initial values (x0andx˙0) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x–x˙ plane and the x–ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory.

Suggested Citation

  • Tanaka, Yosuke & Mizuno, Yuji & Kado, Tatsuhiko & Zhao, Hua-An, 2007. "Nonlinear dynamics in the relativistic field equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1054-1075.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:5:p:1054-1075
    DOI: 10.1016/j.chaos.2005.11.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905011604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanaka, Yosuke & Mizuno, Yuzi & Kado, Tatsuhiko, 2005. "Chaotic dynamics in the Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 407-422.
    2. El Naschie, M.S., 2005. "The two-slit experiment as the foundation of E-infinity of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 509-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanaka, Yosuke & Mizuno, Yuji & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Nonlinear dynamics in the Einstein–Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 533-549.
    2. Tanaka, Yosuke & Shudo, Takefumi & Yosinaga, Tetsutaro & Kimura, Hiroshi, 2008. "Relativistic field equations and nonlinear dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 941-949.
    3. Tanaka, Yosuke & Nakano, Shingo & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Einstein–Friedmann equation, nonlinear dynamics and chaotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2159-2173.
    4. Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Yosuke & Mizuno, Yuji & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Nonlinear dynamics in the Einstein–Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 533-549.
    2. Tanaka, Yosuke & Shudo, Takefumi & Yosinaga, Tetsutaro & Kimura, Hiroshi, 2008. "Relativistic field equations and nonlinear dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 941-949.
    3. Lael, Fatemeh & Nourouzi, Kourosh, 2008. "Some results on the IF-normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 931-939.
    4. Khastan, A. & Ivaz, K., 2009. "Numerical solution of fuzzy differential equations by Nyström method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 859-868.
    5. Basu, C.K. & Mandal, S.S., 2009. "A note on disconnectedness," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3242-3246.
    6. Ismat Beg & Shaban Sedghi & Nabi Shobe, 2013. "Fixed Point Theorems in Fuzzy Metric Spaces," International Journal of Analysis, Hindawi, vol. 2013, pages 1-4, January.
    7. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    8. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    9. Cho, Yeol Je & Sedghi, Shaban & Shobe, Nabi, 2009. "Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2233-2244.
    10. El Naschie, M.S., 2005. "Stability Analysis of the two-slit experiment with quantum particles," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 291-294.
    11. Miheţ, Dorel, 2009. "Fixed point theorems in probabilistic metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1014-1019.
    12. Gregori, V. & Romaguera, S. & Veeramani, P., 2006. "A note on intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 902-905.
    13. Deshpande, Bhavana, 2009. "Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2722-2728.
    14. Zorlutuna, İdris, 2008. "On strong forms of completely irresolute functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 970-979.
    15. El Naschie, M.S., 2005. "From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 969-977.
    16. Abbasbandy, S. & Adabitabar Firozja, M., 2007. "Fuzzy linguistic model for interpolation," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 551-556.
    17. Saadati, R. & Sedghi, S. & Shobe, N., 2008. "Modified intuitionistic fuzzy metric spaces and some fixed point theorems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 36-47.
    18. Goudarzi, M. & Vaezpour, S.M. & Saadati, R., 2009. "On the intuitionistic fuzzy inner product spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1105-1112.
    19. Miheţ, Dorel, 2009. "A note on a fixed point theorem in Menger probabilistic quasi-metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2349-2352.
    20. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:5:p:1054-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.