IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i4p930-940.html
   My bibliography  Save this article

Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems

Author

Listed:
  • Hyun, Chang-Ho
  • Kim, Jae-Hun
  • Kim, Euntai
  • Park, Mignon

Abstract

This paper proposes a synchronization design scheme based on an alternative indirect adaptive fuzzy observer and its application to secure communication of chaotic systems. It is assumed that their states are unmeasurable and their parameters are unknown. Chaotic systems and the structure of the fuzzy observer are represented by the Takagi–Sugeno fuzzy model. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed system is guaranteed. Through this process, the asymptotic synchronization of chaotic systems is achieved. The proposed observer is applied to secure communications of chaotic systems and some numerical simulation results show the validity of theoretical derivations and the performance of the proposed observer.

Suggested Citation

  • Hyun, Chang-Ho & Kim, Jae-Hun & Kim, Euntai & Park, Mignon, 2006. "Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 930-940.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:4:p:930-940
    DOI: 10.1016/j.chaos.2005.04.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905003802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lien, Chang-Hua, 2007. "H∞ non-fragile observer-based controls of dynamical systems via LMI optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 428-436.
    2. Beyhan, Selami & Cetin, Meric, 2022. "Second-order hyperparameter tuning of model-based and adaptive observers for time-varying and unknown chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. López-Gutiérrez, R.M. & Posadas-Castillo, C. & López-Mancilla, D. & Cruz-Hernández, C., 2009. "Communicating via robust synchronization of chaotic lasers," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 277-285.
    4. Lee, Won-Ki & Hyun, Chang-Ho & Lee, Heejin & Kim, Euntai & Park, Mignon, 2007. "Model reference adaptive synchronization of T–S fuzzy discrete chaotic systems using output tracking control," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1590-1598.
    5. Asemani, Mohammad Hassan & Majd, Vahid Johari, 2009. "Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1126-1135.
    6. Hyun, Chang-Ho & Park, Chang-Woo & Kim, Jae-Hun & Park, Mignon, 2009. "Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2200-2209.
    7. Li, Lixiang & Yang, Yixian & Peng, Haipeng, 2009. "Fuzzy system identification via chaotic ant swarm," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 401-409.
    8. Grassi, Giuseppe, 2009. "Observer-based hyperchaos synchronization in cascaded discrete-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 1029-1039.
    9. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    10. Lien, Chang-Hua & Cheng, Wen-Chin & Tsai, Che-Hung & Yu, Ker-Wei, 2007. "Non-fragile observer-based controls of linear system via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1530-1537.
    11. Aguilar-Bustos, A.Y. & Cruz-Hernández, C., 2009. "Synchronization of discrete-time hyperchaotic systems: An application in communications," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1301-1310.
    12. Tang, Fang, 2008. "An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1090-1096.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:4:p:930-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.