IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v23y2005i4p1439-1449.html
   My bibliography  Save this article

Stochastic resonance induced by novel random transitions of motion of FitzHugh–Nagumo neuron model

Author

Listed:
  • Zhang, Guang-Jun
  • Xu, Jian-Xue

Abstract

In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh–Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above.

Suggested Citation

  • Zhang, Guang-Jun & Xu, Jian-Xue, 2005. "Stochastic resonance induced by novel random transitions of motion of FitzHugh–Nagumo neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1439-1449.
  • Handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1439-1449
    DOI: 10.1016/j.chaos.2004.06.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790400400X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.06.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ting & Wang, Jiang & Fei, Xiangyang & Deng, Bin, 2007. "Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 194-202.
    2. Zhang, Guang-Jun & Xu, Jian-Xue & wang, Jue & Yue, Zhi-Feng & Zou, Hai-Lin, 2009. "Stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable duffing oscillator and bifurcation of moment equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2272-2279.
    3. Mbeunga, N.K. & Nana, B. & Woafo, P., 2021. "Dynamics of array mechanical arms coupled each to a Fitzhugh-Nagumo neuron," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Wang, Jiang & Zhang, Zhen & Li, Huiyan, 2008. "Synchronization of FitzHugh–Nagumo systems in EES via H∞ variable universe adaptive fuzzy control," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1332-1339.
    5. Qu, Lianghui & Du, Lin & Cao, Zilu & Hu, Haiwei & Deng, Zichen, 2021. "Pattern transition of neuronal networks induced by chemical autapses with random distribution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1439-1449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.