Author
Listed:
- Kırkgöz, Haluk
- Kurt, Onur
Abstract
This study proposes a comprehensive deep learning framework to predict bitcoin energy usage by integrating advanced data preparation, feature engineering, and statistical analysis. The methodology utilizes a novel custom dataset combining the Cambridge Bitcoin Electricity Consumption Index (CBECI) and real-world industrial electricity prices from the United States Energy Information Administration (EIA), resulting in a robust, price-adjusted energy consumption time series. Stationarity is assessed using the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, while Seasonal-Trend decomposition using Loess smoothing (STL) and AutoRegressive Integrated Moving Average (Auto-ARIMA) guide detrending and differencing. Feature selection is performed via mutual information and Granger causality analysis to identify key attributes related to energy consumption. Four deep learning architectures, namely Long Short-Term Memory (LSTM), one dimensional Convolutional Neural (1D-CNN), hybrid CNN-LSTM, and a convolutional transformer-based model (ConvTransformer), are evaluated using a sliding window approach. Model performance is assessed with various metrics. Our results reveal that the ConvTransformer consistently outperforms other models, achieving superior accuracy and stability with the lowest mean absolute error (MAE = 1.463), root mean square error (RMSE = 1.892), and Huber Loss (1.038), as well as the highest coefficient of determination (R2 = 99.355 %). These findings establish a robust framework for modeling complex, non-stationary, high-dimensional time series with irregular patterns, extending beyond bitcoin to broader energy forecasting in computational systems. The methodology contributes to sustainable blockchain development by enabling accurate energy consumption predictions essential for environmental impact assessment and policy formulation.
Suggested Citation
Kırkgöz, Haluk & Kurt, Onur, 2025.
"Modeling bitcoin network energy demand: Price-adjusted hybrid deep learning approach to complex time series forecasting,"
Chaos, Solitons & Fractals, Elsevier, vol. 200(P2).
Handle:
RePEc:eee:chsofr:v:200:y:2025:i:p2:s0960077925010884
DOI: 10.1016/j.chaos.2025.117075
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:200:y:2025:i:p2:s0960077925010884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.