IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v199y2025ip3s096007792500877x.html
   My bibliography  Save this article

Quantifying discriminability of evaluation metrics in link prediction for real networks

Author

Listed:
  • Wan, Shuyan
  • Bi, Yilin
  • Jiao, Xinshan
  • Zhou, Tao

Abstract

Link prediction is one of the most productive branches in network science, aiming to predict links that would have existed but have not yet been observed, or links that will appear during the evolution of the network. Over nearly two decades, the field of link prediction has amassed a substantial body of research, encompassing a plethora of algorithms and diverse applications. For any algorithm, one or more evaluation metrics are required to assess its performance. Because using different evaluation metrics can provide different assessments of the algorithm performance, how to select appropriate evaluation metrics is a fundamental issue in link prediction. To address this issue, we propose a novel measure that quantifiers the discriminability of any evaluation metric given a real network and an algorithm. Based on 131 real networks and 20 representative algorithms, we systematically compare the discriminabilities of eight evaluation metrics, and demonstrate that H-measure and Area Under the ROC Curve (AUC) exhibit the strongest discriminabilities, followed by Normalized Discounted Cumulative Gain (NDCG). Our finding is robust for networks in different domains and algorithms of different types. This study provides insights into the selection of evaluation metrics, which may further contribute to standardizing the evaluating process of link prediction algorithms.

Suggested Citation

  • Wan, Shuyan & Bi, Yilin & Jiao, Xinshan & Zhou, Tao, 2025. "Quantifying discriminability of evaluation metrics in link prediction for real networks," Chaos, Solitons & Fractals, Elsevier, vol. 199(P3).
  • Handle: RePEc:eee:chsofr:v:199:y:2025:i:p3:s096007792500877x
    DOI: 10.1016/j.chaos.2025.116864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792500877X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:199:y:2025:i:p3:s096007792500877x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.