IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v199y2025ip3s0960077925008306.html
   My bibliography  Save this article

Network classification through random walks

Author

Listed:
  • Travieso, Gonzalo
  • Merenda, João
  • Bruno, Odemir M.

Abstract

Network models have been widely used to study diverse systems and analyze their dynamic behaviors. Given the structural variability of networks, an intriguing question arises: Can we infer the type of system represented by a network based on its structure? This classification problem involves extracting relevant features from the network. Existing literature has proposed various methods that combine structural measurements and dynamical processes for feature extraction. In this study, we introduce an approach to characterize networks using statistics from random walks, which can be particularly informative about network properties. We present the employed statistical metrics and compare their performance on multiple datasets with other state-of-the-art feature extraction methods. Our results demonstrate that the proposed method is effective in many cases, often outperforming existing approaches, although some limitations are observed across certain datasets.

Suggested Citation

  • Travieso, Gonzalo & Merenda, João & Bruno, Odemir M., 2025. "Network classification through random walks," Chaos, Solitons & Fractals, Elsevier, vol. 199(P3).
  • Handle: RePEc:eee:chsofr:v:199:y:2025:i:p3:s0960077925008306
    DOI: 10.1016/j.chaos.2025.116817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925008306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:199:y:2025:i:p3:s0960077925008306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.