IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v199y2025ip1s0960077925007064.html
   My bibliography  Save this article

Dynamic evolution of cooperation based on adaptive reputation threshold and game transition

Author

Listed:
  • Yue, Hongyu
  • Xiong, Xiaojin
  • Feng, Minyu
  • Szolnoki, Attila

Abstract

In real-world social systems, individual interactions are frequently shaped by reputation, which not only influences partner selection but also affects the nature and benefits of the interactions themselves. We propose a heterogeneous game transition model that incorporates a reputation-based dynamic threshold mechanism to investigate how reputation regulates game evolution. In our framework, individuals determine the type of game they engage in according to their own and their neighbors’ reputation levels. In turn, the outcomes of these interactions modify their reputations, thereby driving the adaptation and evolution of future strategies in a feedback-informed manner. Through simulations on two representative topological structures, square lattice and small-world networks, we find that network topology exerts a profound influence on the evolutionary dynamics. Due to its localized connection characteristics, the square lattice network fosters the long-term coexistence of competing strategies. In contrast, the small-world network is more susceptible to changes in system parameters due to the efficiency of information dissemination and the sensitivity of strategy evolution. Additionally, the reputation mechanism is significant in promoting the formation of a dominant state of cooperation, especially in contexts of high sensitivity to reputation. Although the initial distribution of reputation influences the early stage of the evolutionary path, it has little effect on the final steady state of the system. Hence, we can conclude that the ultimate steady state of evolution is primarily determined by the reputation mechanism and the network structure.

Suggested Citation

  • Yue, Hongyu & Xiong, Xiaojin & Feng, Minyu & Szolnoki, Attila, 2025. "Dynamic evolution of cooperation based on adaptive reputation threshold and game transition," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
  • Handle: RePEc:eee:chsofr:v:199:y:2025:i:p1:s0960077925007064
    DOI: 10.1016/j.chaos.2025.116693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925007064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:199:y:2025:i:p1:s0960077925007064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.