IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v198y2025ics0960077925006435.html

A memristive neuron with double capacitive variables coupled by Josephson junction

Author

Listed:
  • Wang, Binchi
  • Ren, Guodong
  • Ma, Jun
  • Guo, Yitong

Abstract

Continuous firing patterns in biological neurons result from time-varying electromagnetic field accompanied by energy exchange between magnetic field and electric field in the cell, which the intracellular ions are diffused and membrane channels are open for ions propagation across the outer and inner cell membranes. Incorporation of memristive terms of the neuron models can describe the effect of electromagnetic induction and even the regulation from external applied physical field. During circuit approach and implement for a neural circuit, capacitors are used to mimic the capacitive properties of the cell membrane, while inductors, nonlinear resistor and constant voltage source are effective to mimic the physical properties of ion channels. This paper proposed a neural circuit composed of two capacitors via Josephson junction connection, and the paralleled branch circuits are connected by using an inductor and a memristor. The absence using of both linear and nonlinear resistors reduces consumption of Joule heat. Energy function for the two kinds of memristive neurons are obtained and proofed, stochastic/coherence resonance is induced under noisy excitation at moderate noise intensity. Stability and bifurcation analysis clarified the main dynamical and physical property of the suggested neural circuits and their equivalent dimensionless models. Finally, an adaptive growth law is suggested to control the membrane parameter and mode transition between firing patterns is discussed in detail. That is, the neural circuit coupled with memristor and Josephson junction is effective to describe the electrical property and dynamical characteristic even without using any resistive components.

Suggested Citation

  • Wang, Binchi & Ren, Guodong & Ma, Jun & Guo, Yitong, 2025. "A memristive neuron with double capacitive variables coupled by Josephson junction," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925006435
    DOI: 10.1016/j.chaos.2025.116630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925006435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Chen, Yixuan & Guo, Qun & Zhang, Xiaofeng & Wang, Chunni, 2024. "Numerical approach and physical description for a two-capacitive neuron and its adaptive network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    3. Jia, Junen & Wang, Chunni & Zhang, Xiaofeng & Zhu, Zhigang, 2024. "Energy and self-adaption in a memristive map neuron," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Wang, Chunhua & Luo, Dingwei & Deng, Quanli & Yang, Gang, 2024. "Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    5. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Yang, Feifei & Song, Xinlin & Yu, Zhenhua, 2024. "Dynamics of a functional neuron model with double membranes," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    7. Xu, Quan & Wang, Kai & Feng, Chengtao & Fan, Weiwei & Wang, Ning, 2024. "Dynamical effects of low-frequency and high-frequency current stimuli in a memristive Morris–Lecar neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    8. Wang, Chunhua & Li, Yufei & Deng, Quanli, 2025. "Discrete-time fractional-order local active memristor-based Hopfield neural network and its FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    9. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2025. "Excitability and synchronization of vanadium dioxide memristor-inspired neurons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 99-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yixuan & Guo, Yitong & Wang, Chunni & Zhu, Zhigang, 2025. "Energy level and coherence resonance in two memristive neurons in polarized electric field," Chaos, Solitons & Fractals, Elsevier, vol. 199(P2).
    2. Lei, Zhao & Guo, Yitong & Ma, Jun & Ren, Guodong, 2025. "Physical characteristic and dynamics in a neural circuit without using inductor and nonlinear resistor," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    3. Yu, Zhenhua & Zhu, Kailong & Wang, Ya & Yang, Feifei, 2025. "Dynamics of a neuron with a hybrid memristive ion channel," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    4. Ji, Yansu & Mao, Xiaochen, 2024. "Fast and slow dynamical behaviors of delayed-coupled thermosensitive neurons under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    5. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    6. Chen, Yixuan & Guo, Qun & Zhang, Xiaofeng & Wang, Chunni, 2024. "Numerical approach and physical description for a two-capacitive neuron and its adaptive network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    7. Wan, Qiuzhen & Chen, Chaoyue & Liu, Tieqiao & Rao, Huhui & Dong, Jun, 2025. "High-dimensional memristor-coupled multiple neural networks with spatial multi-structure attractors and application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    8. Jiang, Donghua & Njitacke, Zeric Tabekoueng & Long, Guoqiang & Awrejcewicz, Jan & Zheng, Mingwen & Cai, Lei, 2024. "Novel Tabu learning neuron model with variable activation gradient and its application to secure healthcare," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    9. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Enriched dynamical behavior of a novel locally active memristor-driven neuron map," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
    11. Yang, Feifei & Song, Xinlin & Xu, Ying, 2025. "A photocurrent-driven memristive ion channel neuron," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    12. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    13. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    14. Lai, Qiang & Qin, Minghong & Chen, Guanrong, 2025. "Neurodynamics in simple cyclic Hopfield neural network under external electromagnetic radiation and stimulating current inputs," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    15. Shi, Qianqian & Qu, Jiaxiang & Qu, Shaocheng & An, Xinlei & Wei, Ziming, 2025. "Dynamical analysis of an improved memristive FHN neuron model and its application in medical image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 199(P3).
    16. Jiang, Cuimei & Ye, Yunxiao & Zhang, Fangfang & Kou, Lei & Bao, Han & Zhang, Jianlin & Liu, Hongjun, 2025. "Hardware implementation and information security application of a novel chaotic system with a cubic memristor and complex parameters," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    17. Wang, Chunhua & Li, Yufei & Deng, Quanli, 2025. "Discrete-time fractional-order local active memristor-based Hopfield neural network and its FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    18. Wu, Huagan & Gu, Jinxiang & Wang, Ning & Chen, Mo & Xu, Quan, 2025. "Spiking and bursting activities in an NLAM-based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    19. Rybalova, E. & Ryabov, A. & Muni, S. & Strelkova, G., 2024. "Lévy noise-induced coherence resonance in neural maps," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    20. Akhmet, Marat & Başkan, Kağan & Yeşil, Cihan, 2024. "Markovian noise-induced delta synchronization approach for Hindmarsh–Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925006435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.