IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v198y2025ics0960077925006435.html
   My bibliography  Save this article

A memristive neuron with double capacitive variables coupled by Josephson junction

Author

Listed:
  • Wang, Binchi
  • Ren, Guodong
  • Ma, Jun
  • Guo, Yitong

Abstract

Continuous firing patterns in biological neurons result from time-varying electromagnetic field accompanied by energy exchange between magnetic field and electric field in the cell, which the intracellular ions are diffused and membrane channels are open for ions propagation across the outer and inner cell membranes. Incorporation of memristive terms of the neuron models can describe the effect of electromagnetic induction and even the regulation from external applied physical field. During circuit approach and implement for a neural circuit, capacitors are used to mimic the capacitive properties of the cell membrane, while inductors, nonlinear resistor and constant voltage source are effective to mimic the physical properties of ion channels. This paper proposed a neural circuit composed of two capacitors via Josephson junction connection, and the paralleled branch circuits are connected by using an inductor and a memristor. The absence using of both linear and nonlinear resistors reduces consumption of Joule heat. Energy function for the two kinds of memristive neurons are obtained and proofed, stochastic/coherence resonance is induced under noisy excitation at moderate noise intensity. Stability and bifurcation analysis clarified the main dynamical and physical property of the suggested neural circuits and their equivalent dimensionless models. Finally, an adaptive growth law is suggested to control the membrane parameter and mode transition between firing patterns is discussed in detail. That is, the neural circuit coupled with memristor and Josephson junction is effective to describe the electrical property and dynamical characteristic even without using any resistive components.

Suggested Citation

  • Wang, Binchi & Ren, Guodong & Ma, Jun & Guo, Yitong, 2025. "A memristive neuron with double capacitive variables coupled by Josephson junction," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925006435
    DOI: 10.1016/j.chaos.2025.116630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925006435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925006435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.