IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v198y2025ics0960077925005533.html
   My bibliography  Save this article

Stochastic dynamics of hysteresis systems under harmonic and Poisson excitations

Author

Listed:
  • Yuan, Zi
  • Chen, Lincong
  • Sun, Jian-Qiao

Abstract

Hysteresis, a common nonlinear phenomenon in engineering structures, has been extensively studied. However, the nonlinear behavior of hysteretic systems under combined deterministic and random excitations remains insufficiently explored. This paper investigates the stochastic response and P-bifurcation of hysteretic systems under harmonic and Poisson white noise excitations. The generalized Fokker–Planck–Kolmogorov (GFPK) equation governing the probability density function (PDF) of the system is solved using a radial basis function neural network (RBFNN) method. Specifically, the trial solution of the GFPK equation is represented by a set of standard Gaussian functions. The loss function incorporates both the residual of the GFPK equation and a normalization constraint. Optimization of the weighting coefficients is transformed into solving a system of algebraic equations, which significantly accelerates the training process. The resulting PDF solutions are used to reveal stochastic P-bifurcation phenomena in both Bouc–Wen and integrable Duhem hysteretic systems. Bifurcation shifts are observed as the random excitation transitions from Poisson to Gaussian noise. The proposed approach is validated by close agreement with Monte Carlo simulation (MCS) results, demonstrating its effectiveness for analyzing complex stochastic dynamics under combined harmonic and non-Gaussian excitations.

Suggested Citation

  • Yuan, Zi & Chen, Lincong & Sun, Jian-Qiao, 2025. "Stochastic dynamics of hysteresis systems under harmonic and Poisson excitations," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005533
    DOI: 10.1016/j.chaos.2025.116540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925005533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.