IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v198y2025ics0960077925005259.html
   My bibliography  Save this article

Shock wave dynamics via symmetry-driven analysis of a two-phase flow with the Chaplygin pressure law

Author

Listed:
  • Sharma, Aniruddha Kumar
  • Shagolshem, Sumanta
  • Arora, Rajan

Abstract

This article investigates wave propagation in a two-phase flow with Chaplygin pressure law, an equation where pressure inversely depends on density. The study employs Lie symmetries and symmetry-driven analysis to derive one-dimensional optimal subalgebras using the adjoint transformation and the invariant functions. Symmetry reductions yield several new exact solutions, and their physical behavior is examined graphically. Further, solutions such as peak-on waves, kinks, and parabolic solitons are identified using traveling wave transformation. Next, a framework of non-locally related PDE, including potential system and inverse potential systems (IPS), is designed to classify non-local symmetries and discover more non-trivial exact solutions for the model. Then, novel conservation laws are constructed using the non-linear self-adjointness property of the model. Finally, the research explores the dynamic evolution of characteristic shock, weak discontinuity, and their interactions using one of the developed solutions. It contributes to understanding two-phase flow, offering practical implications for astrophysics, high-speed aerodynamics, and energy systems with unconventional pressure laws.

Suggested Citation

  • Sharma, Aniruddha Kumar & Shagolshem, Sumanta & Arora, Rajan, 2025. "Shock wave dynamics via symmetry-driven analysis of a two-phase flow with the Chaplygin pressure law," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005259
    DOI: 10.1016/j.chaos.2025.116512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925005259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.