IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v198y2025ics0960077925005223.html
   My bibliography  Save this article

Modeling social cohesion with coupled oscillators: Synchrony and fragmentation

Author

Listed:
  • Schaposnik, Laura P.
  • Hsu, Sheryl
  • Dunbar, Robin I.M.

Abstract

Maintaining cohesion is a fundamental challenge in group-living species, where individuals must balance their own activity schedules with the demands of social interactions. In this paper, we model group dynamics using a network of semi-coupled oscillators to investigate how differences in activity schedules impact social cohesion and fragmentation. By introducing parameters for social “stickiness” (interaction strength) and activity synchronization, we simulate group behavior across varying conditions. Our findings reveal that, mathematically, cohesive groups can fragment when individual schedules diverge beyond critical thresholds, and that increasing social stickiness mitigates this effect. We explore these dynamics in the context of group size, subgroup formation, and coupling parameters, drawing parallels to network cohesion and fragmentation in human and artificial social systems. These results highlight the role of synchronization in maintaining stable social structures and suggest future avenues for empirical validation and application in broader social network contexts.

Suggested Citation

  • Schaposnik, Laura P. & Hsu, Sheryl & Dunbar, Robin I.M., 2025. "Modeling social cohesion with coupled oscillators: Synchrony and fragmentation," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005223
    DOI: 10.1016/j.chaos.2025.116509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925005223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Animal synchrony; Agents’ segregation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.