IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v197y2025ics0960077925005582.html

Synchronicity and energy evolution of field-coupled Chua's circuits via parallel inductor-capacitor coupling channel

Author

Listed:
  • Li, Zezhong
  • Xue, Wanqi
  • Xu, Quan
  • Wu, Huagan
  • Chen, Mo

Abstract

Field coupling implemented via combined functional elements of capacitor, inductor, and memristor could provide additional energy circulation paths and is expected to make the coupling channel more effective and controllable. To elucidate synchronicity and energy evolution governed by this field coupling scheme, two memristive Chua's circuits are coupled using a parallel inductor-capacitor channel. Numerical simulations are performed to uncover the synchronization dynamics induced by single inductor/capacitor and parallel inductor-capacitor channels and compare their synchronous characteristics. The dimensionless energy functions for the sub-circuits and coupling channel are derived from their physical field energy, based on which the energy flows under asynchronous, reverse synchronization, or lag synchronization states are numerically discussed. Especially, under the regulation of coupling inductor's initial value, the synchronization dynamics are flexibly adjusted by the memristor initial conditions. Finally, LTspice-based circuit simulations are performed to verify the numerical findings. The obtained results can deepen the understanding of field coupling and enrich the implementation schemes of chaos synchronization.

Suggested Citation

  • Li, Zezhong & Xue, Wanqi & Xu, Quan & Wu, Huagan & Chen, Mo, 2025. "Synchronicity and energy evolution of field-coupled Chua's circuits via parallel inductor-capacitor coupling channel," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925005582
    DOI: 10.1016/j.chaos.2025.116545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925005582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hanlin Sun & Filippo Radicchi & Jürgen Kurths & Ginestra Bianconi, 2023. "The dynamic nature of percolation on networks with triadic interactions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    3. Shi, Shuyu & Liang, Yan & Li, Yiqing & Lu, Zhenzhou & Dong, Yujiao, 2024. "A neuron circuit based on memristor and negative capacitor: Dynamics analysis and hardware implementation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Chen, Mo & Xue, Wanqi & Luo, Xuefeng & Zhang, Yunzhen & Wu, Huagan, 2023. "Effects of coupling memristors on synchronization of two identical memristive Chua's systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Bayani, Atiyeh & Jafari, Sajad & Azarnoush, Hamed & Nazarimehr, Fahimeh & Boccaletti, Stefano & Perc, Matjaž, 2023. "Explosive synchronization dependence on initial conditions: The minimal Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yixuan & Guo, Qun & Zhang, Xiaofeng & Wang, Chunni, 2024. "Numerical approach and physical description for a two-capacitive neuron and its adaptive network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    2. Yu, Zhenhua & Zhu, Kailong & Wang, Ya & Yang, Feifei, 2025. "Dynamics of a neuron with a hybrid memristive ion channel," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    3. Jiang, Donghua & Njitacke, Zeric Tabekoueng & Long, Guoqiang & Awrejcewicz, Jan & Zheng, Mingwen & Cai, Lei, 2024. "Novel Tabu learning neuron model with variable activation gradient and its application to secure healthcare," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    4. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Yang, Feifei & Song, Xinlin & Xu, Ying, 2025. "A photocurrent-driven memristive ion channel neuron," Chaos, Solitons & Fractals, Elsevier, vol. 199(P1).
    7. Zhifei Ma & Huan Huang & Xiangmin Zhang & Dongxue Qin & Xiaodi Li, 2024. "Can internet use promote farmers to adopt chemical fertilizer reduction and efficiency enhancement technology in China?—an empirical analysis based on endogenous switching probit model," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-23, August.
    8. Ji, Yansu & Mao, Xiaochen, 2024. "Fast and slow dynamical behaviors of delayed-coupled thermosensitive neurons under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    9. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    10. Xiao, Min & Gao, Zhongtian & Chen, Tianrui & Park, Ju H., 2025. "Resampled interval control for prescribed-time bipartite synchronization of signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    11. Liang, Yuan & Qi, Mingze & Huangpeng, Qizi & Duan, Xiaojun, 2023. "Percolation of interlayer feature-correlated multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Shi, Qianqian & Qu, Jiaxiang & Qu, Shaocheng & An, Xinlei & Wei, Ziming, 2025. "Dynamical analysis of an improved memristive FHN neuron model and its application in medical image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 199(P3).
    13. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    14. Wang, Binchi & Ren, Guodong & Ma, Jun & Guo, Yitong, 2025. "A memristive neuron with double capacitive variables coupled by Josephson junction," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
    15. Ma, Tao & Mou, Jun & Chen, Wanzhong, 2025. "Dynamics and implementation of a functional neuron model with hyperchaotic behavior under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    16. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    17. Huang, Changwei & Luo, Yijun & Han, Wenchen, 2023. "Cooperation and synchronization in evolutionary opinion changing rate games," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    18. Akhmet, Marat & Başkan, Kağan & Yeşil, Cihan, 2024. "Markovian noise-induced delta synchronization approach for Hindmarsh–Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    19. Xu, Ying & Ren, Guodong & Ma, Jun, 2023. "Patterns stability in cardiac tissue under spatial electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    20. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925005582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.