Author
Listed:
- Přibylová, Lenka
- Ševčík, Jan
- Halmazňa, Tomáš
- Husa, Štěpán
- Kajanová, Lucia
- Malárik, Peter
- Polách, Miroslav
- Zapadlo, Štěpán
- Eclerová, Veronika
Abstract
We perform a multi-parameter bifurcation analysis of the Pinsky–Rinzel neuron model. Varying input currents to the soma and dendrite allows for the emergence of multiple dynamical regimes, including resting states, periodic cycles, tori, and chaotic states. The existence of tori implies the coexistence of two distinct frequency bands, which may underlie theta–gamma coupling observed in hippocampal activity. Additionally, a comprehensive bifurcation analysis reveals a novel type of chaotic attractor spanning a wide parameter region defined by inward currents to the soma and dendrite of a pyramidal neuron. This attractor facilitates the coexistence of two distinct bursting regimes as responses to the same stimulus. These bursting patterns, both previously observed experimentally in vivo and in vitro, primarily differ in dendritic calcium levels, with one exhibiting significantly elevated calcium concentrations. In this study, we introduce a robust method for identifying the bifurcation boundary of a global attractor associated with bursting behavior. The method is based on a comparative analysis of numerical continuation and grid-based simulations and can be applied analogously to other models. This rigorous approach not only provides a mechanistic explanation for experimentally observed concurrent neuronal responses to identical stimuli but also demonstrates that the Pinsky–Rinzel model, despite simplifying the pyramidal cell into two compartments, effectively captures a wide range of dynamical regimes present in pyramidal cell signaling. Moreover, it highlights the model’s robustness in describing complex neuronal dynamics, including epileptic activity.
Suggested Citation
Přibylová, Lenka & Ševčík, Jan & Halmazňa, Tomáš & Husa, Štěpán & Kajanová, Lucia & Malárik, Peter & Polách, Miroslav & Zapadlo, Štěpán & Eclerová, Veronika, 2025.
"Chaos links dendritic calcium to bursting in hippocampal pyramidal cells,"
Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
Handle:
RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925005302
DOI: 10.1016/j.chaos.2025.116517
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925005302. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.