IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v197y2025ics0960077925004795.html

A contrastive learning framework of graph reconstruction and hypergraph learning for key node identification

Author

Listed:
  • Huang, Xu-Dong
  • Zhang, Xian-Jie
  • Zhang, Hai-Feng

Abstract

With the emergence of complex networks in various domains, the key node identification has become one of the critical issues that needs to be studied. Traditional index methods typically focus on single structural information, while existing data-driven approaches often rely solely on the intrinsic lower-order features of nodes. However, assessing the importance of nodes requires a comprehensive consideration of both network structures and higher-order features from multiple perspectives. To address these challenges, this paper proposes a novel deep learning framework based on Graph Reconstruction and Hypergraph Contrastive Learning, termed GRHCL. The GRHCL method constructs hypergraph structures from original graphs using random walks, followed by leveraging graph reconstruction and hypergraph learning methods to capture both structural and higher-order embedding features of nodes. Positive and negative node pairs are then constructed across different views for contrastive learning. Finally, the model is trained using a training sample set obtained through a clustering sampling strategy, along with a joint loss function. Comparative experiments against various baseline methods demonstrate that the GRHCL method achieves superior predictive performance with smaller training sets, improving accuracy by over 5% on some datasets compared to the next best-performing method.

Suggested Citation

  • Huang, Xu-Dong & Zhang, Xian-Jie & Zhang, Hai-Feng, 2025. "A contrastive learning framework of graph reconstruction and hypergraph learning for key node identification," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925004795
    DOI: 10.1016/j.chaos.2025.116466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Jinfang & Dai, Jinying & Wang, Bin & Duan, Guihua & Long, Jun & Zhang, Junkai & Guan, Kerong & Hu, Sheng & Chen, Long & Guan, Wanghao, 2020. "Identifying influential nodes in complex networks based on global and local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    4. Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Identifying critical nodes in complex networks based on distance Laplacian energy," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Wang, Jinping & Sun, Shaowei, 2024. "Identifying influential nodes: A new method based on dynamic propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    6. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Zhong, Xingju & Liu, Renjing, 2024. "Identifying critical nodes in interdependent networks by GA-XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Response to the comment on “Identifying critical nodes in complex networks based on distance Laplacian energy”," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    9. Wu, Jian & Qiu, Tian & Chen, Guang, 2024. "A general deep-learning approach to node importance identification," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    10. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    11. Hui Xu & Jianpei Zhang & Jing Yang & Lijun Lun, 2018. "Identifying Important Nodes in Complex Networks Based on Multiattribute Evaluation," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, May.
    12. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    13. Wang, Feifei & Sun, Zejun & Gan, Quan & Fan, Aiwan & Shi, Hesheng & Hu, Haifeng, 2022. "Influential node identification by aggregating local structure information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    15. Wang, Jinping & Sun, Shaowei, 2024. "Comment on the paper “Identifying critical nodes in complex networks based on distance Laplacian energy”," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    16. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Wu, Hongqian & Deng, Hongzhong & Li, Jichao & Wang, Yangjun & Yang, Kewei, 2024. "Hunting for influential nodes based on radiation theory in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    18. Wan, Yi-Ping & Wang, Jian & Zhang, Dong-Ge & Dong, Hao-Yang & Ren, Qing-Hui, 2018. "Ranking the spreading capability of nodes in complex networks based on link significance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 929-937.
    19. Atdag, Samet & Bingol, Haluk O., 2021. "Computational models for commercial advertisements in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    20. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    21. Wang, Longyun & Mou, Jianhong & Dai, Bitao & Tan, Suoyi & Cai, Mengsi & Chen, Huan & Jin, Zhen & Sun, Guiquan & Lu, Xin, 2024. "Influential nodes identification based on hierarchical structure," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    22. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    23. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xiaoyu & Hao, Rongxia, 2025. "Finding influential nodes in complex networks by integrating nodal intrinsic and extrinsic centrality," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    3. Ullah, Aman & Meng, Yahui, 2025. "Finding influential nodes via graph embedding and hybrid centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    4. Li, Shaobao & Quan, Yiran & Luo, Xiaoyuan & Wang, Juan & Tian, Changyong & Guan, Xinping, 2025. "Identifying influential nodes in complex networks via weighted k-shell entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 199(P3).
    5. Meng, Lei & Xu, Guiqiong & Dong, Chen, 2025. "An improved gravity model for identifying influential nodes in complex networks considering asymmetric attraction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    6. Ma, Jinlong & Hu, Jiahao, 2025. "Identifying critical nodes in complex networks via a Multi-Scale Influence Spread method," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
    7. Esfandiari, Shima & Fakhrahmad, Seyed Mostafa, 2025. "The collaborative role of K-Shell and PageRank for identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    8. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Ahmad, Waseem & Wang, Bang, 2024. "A neural diffusion model for identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    10. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    11. Zhao, Zhili & Liu, Xupeng & Sun, Yue & Zhang, Nana & Hu, Ahui & Wang, Shiling & Tu, Yingyuan, 2025. "Influence maximization based on bottom-up community merging," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    12. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    13. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    14. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    15. Wang, Jinping & Sun, Shaowei, 2024. "Identifying influential nodes: A new method based on dynamic propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    16. He, Yongming & Jin, Yufeng & Cao, Jian & Sui, Shengchun & Wang, Jiahe & Ran, Bin, 2025. "Identification of key nodes in urban bus-metro network: A NK-shell algorithm based neighborhood KS," Reliability Engineering and System Safety, Elsevier, vol. 264(PB).
    17. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    18. Wang, Ning & Gao, Ying & He, Jia-tao & Yang, Jun, 2022. "Robustness evaluation of the air cargo network considering node importance and attack cost," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Wu, Jian & Qiu, Tian & Chen, Guang, 2024. "A general deep-learning approach to node importance identification," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925004795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.