IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v197y2025ics0960077925004564.html
   My bibliography  Save this article

Inverse chaotic resonance in scale-free neuronal networks based on synaptic modulation

Author

Listed:
  • Palabas, Tugba

Abstract

Inverse Chaotic Resonance (ICR) refers to the phenomenon in which the mean firing rate is reduced with an optimal intensity of the chaotic activity. In this study, ICR is numerically investigated by modeling the scale-free network topology of Hodgkin–Huxley neurons coupled electrical, excitatory, and inhibitory chemical synapses. First, it is shown that chaotic signals play an important role in changing the average firing frequency of the network consisting of neurons connected by any synaptic coupling. Then it is expressed that the ICR phenomenon occurs depending on the synaptic strength and that even double ICR behavior can also emerge at two different optimal ϵ levels in the case of inhibitory synapse. Moreover, ICR can be modulated by a constant stimulus, and this phenomenon covers a wider range of chaotic current densities at a constant current level close to the excitation threshold. In addition, the effects of the synaptic time constant and network inputs on the appearance of the phenomenon are also examined. These extensive numerical results suggest a new perspective on ICR effect is a robust phenomenon that is observed in neuronal networks regardless of their topological structure.

Suggested Citation

  • Palabas, Tugba, 2025. "Inverse chaotic resonance in scale-free neuronal networks based on synaptic modulation," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925004564
    DOI: 10.1016/j.chaos.2025.116443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925004564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.