IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v197y2025ics0960077925004539.html
   My bibliography  Save this article

Inferring the Langevin equation with uncertainty via Bayesian neural networks

Author

Listed:
  • Bae, Youngkyoung
  • Ha, Seungwoong
  • Jeong, Hawoong

Abstract

Pervasive across diverse domains, stochastic systems exhibit fluctuations in processes ranging from molecular dynamics to climate phenomena. The Langevin equation has served as a common mathematical model for studying such systems, enabling predictions of their temporal evolution and analyses of thermodynamic quantities, including absorbed heat, work done on the system, and entropy production. However, inferring the Langevin equation from observed trajectories is a challenging problem, and assessing the uncertainty associated with the inferred equation has yet to be accomplished. In this study, we present a comprehensive framework that employs Bayesian neural networks for inferring Langevin equations in both overdamped and underdamped regimes. Our framework first provides the drift force and diffusion matrix separately and then combines them to construct the Langevin equation. By providing a distribution of predictions instead of a single value, our approach allows us to assess prediction uncertainties, which can help prevent potential misunderstandings and erroneous decisions about the system. We demonstrate the effectiveness of our framework in inferring Langevin equations for various scenarios including a neuron model and microscopic engine, highlighting its versatility and potential impact.

Suggested Citation

  • Bae, Youngkyoung & Ha, Seungwoong & Jeong, Hawoong, 2025. "Inferring the Langevin equation with uncertainty via Bayesian neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925004539
    DOI: 10.1016/j.chaos.2025.116440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:197:y:2025:i:c:s0960077925004539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.