IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004703.html
   My bibliography  Save this article

Phase control of escapes in the fractional damped Helmholtz oscillator

Author

Listed:
  • Coccolo, Mattia
  • Seoane, Jesús M.
  • Lenci, Stefano
  • Sanjuán, Miguel A.F.

Abstract

We analyze the nonlinear Helmholtz oscillator in the presence of fractional damping, a characteristic feature in several physical situations. In our specific scenario, as well as in the non-fractional case, for large enough excitation amplitudes, all initial conditions are escaping from the potential well. To address this, we incorporate the phase control technique into a parametric term, a feature commonly encountered in real-world situations. In the non-fractional case it has been shown that, a phase difference of ϕOPT≈π, is the optimal value to avoid the escapes of the particles from the potential well. Here, our investigation focuses on understanding when particles escape, considering both the phase difference ϕ and the fractional parameter α as control parameters. Our findings unveil the robustness of phase control, as evidenced by the consistent oscillation of the optimal ϕ value around its non-fractional counterpart when varying the fractional parameter. Additionally, our results underscore the pivotal role of the fractional parameter in governing the proportion of bounded particles, even when utilizing the optimal phase.

Suggested Citation

  • Coccolo, Mattia & Seoane, Jesús M. & Lenci, Stefano & Sanjuán, Miguel A.F., 2024. "Phase control of escapes in the fractional damped Helmholtz oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004703
    DOI: 10.1016/j.chaos.2024.114918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.