IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923006860.html
   My bibliography  Save this article

Light gap bullets in defocusing media with optical lattices

Author

Listed:
  • Chen, Zhiming
  • Wu, Zexing
  • Zeng, Jianhua

Abstract

Searching for three-dimensional spatiotemporal solitons (also known as light/optical bullets) has recently attracted keen theoretical and experimental interests in nonlinear physics. Currently, optical lattices of diverse kinds have been introduced to the stabilization of light bullets, while the investigation for the light bullets of gap type – nonlinear localized modes within the finite gap of the underlying linear Bloch spectrum – is lacking. Herein, we address the formation and stabilization properties of such light gap bullets in periodic media with defocusing nonlinearity, theoretically and in numerical ways. The periodic media are based on two-dimensional periodic standing waves created in a coherent three-level atomic system which is driven to the regime of electromagnetically induced transparency, which in principle can also be replaced by photonic crystals in optics or optical lattices in ground-state ultracold atoms system. The temporal dispersion term is tuned to normal (positive) group velocity dispersion so that to launch the light gap bullets under self-repulsive nonlinearity; two types of such light gap bullets constructed as three-dimensional gap solitons and vortices with topological charge m=1 within the first finite gap are reported and found to be robustly stable in the existence domains. On account of the light bullets were previously limited to the semi-infinite gap of periodic media and continuous nonlinear physical systems, the light gap bullets reported here thus supplement the missing type of three-dimensional spatiotemporal localized modes in periodic media which exhibit finite band gaps.

Suggested Citation

  • Chen, Zhiming & Wu, Zexing & Zeng, Jianhua, 2023. "Light gap bullets in defocusing media with optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006860
    DOI: 10.1016/j.chaos.2023.113785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923006860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tlidi, M. & Gopalakrishnan, S.S. & Taki, M. & Panajotov, K., 2021. "Optical crystals and light-bullets in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Peng Wang & Yuanlin Zheng & Xianfeng Chen & Changming Huang & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2020. "Localization and delocalization of light in photonic moiré lattices," Nature, Nature, vol. 577(7788), pages 42-46, January.
    4. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Bing-Xiang Li & Volodymyr Borshch & Rui-Lin Xiao & Sathyanarayana Paladugu & Taras Turiv & Sergij V. Shiyanovskii & Oleg D. Lavrentovich, 2018. "Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Xu, Si-Liu & Zhu, Min & Peng, Jia-Xin & Fan, Xi & Huang, Qi-Hong & Hua, Chun-Bo & Zhao, Yuan, 2023. "Light bullets in a nonlocal Rydberg medium with PT-symmetric moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Djazet, Alain & Fewo, Serge I. & Djoko, Martin & Felenou, E. Tchomgo & Kofané, Timoléon C., 2023. "Extension of the stability criterion for dissipative vector solitons of a laser coupled two-dimensional Ginzburg–Landau Equation generated from vector asymmetric inputs," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Li, Ji-tao & Dai, Chao-Qing, 2023. "Annular rogue waves in whispering gallery mode optical resonators," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Liu, Xianglian & Li, Xiaoqiong & Li, Kaizhou & Zhou, Jie & Shi, Yuan & Chen, Jingdong, 2023. "Coexistence of Fano and electromagnetically induced transparency resonance line shapes in photonic topological insulators," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Li, Chunyan & Konotop, Vladimir V. & Malomed, Boris A. & Kartashov, Yaroslav V., 2023. "Bound states in Bose-Einstein condensates with radially-periodic spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Xu, Yinshen & Li, Peixin & Mihalache, Dumitru & He, Jingsong, 2023. "Resonant collisions among multi-breathers in the Mel’nikov system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Al-Marzoug, S.M. & Baizakov, B.B. & Bahlouli, H., 2023. "Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    17. Manoj Mishra & Kirti Meena & Divya Yadav & Brajraj Singh & Soumendu Jana, 2023. "The dynamics, stability and modulation instability of Gaussian beams in nonlocal nonlinear media," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-13, August.
    18. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Abdulah A. Alghamdi, 2023. "Quiescent Optical Solitons for the Concatenation Model with Nonlinear Chromatic Dispersion," Mathematics, MDPI, vol. 11(7), pages 1-25, April.
    20. Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Dai, Chao-Qing, 2023. "Scalar vortex solitons and vector dipole solitons in whispering gallery mode optical microresonators," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.