IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics096007792300320x.html
   My bibliography  Save this article

Global versus local clustering of seismicity: Implications with earthquake prediction

Author

Listed:
  • Zaccagnino, Davide
  • Telesca, Luciano
  • Doglioni, Carlo

Abstract

The estimation of the maximum expected magnitude is crucial for seismic hazard assessment. It is usually inferred via Bayesian analysis; alternatively, the size of the largest possible event can be roughly obtained from the extent of the seismogenic source and the depth of the brittle–ductile transition. However, the effectiveness of the first approach is strongly limited by catalog completeness and the intensity of recorded seismicity, so that it can be of practical use only for aftershocks, while the second is affected by extremely large uncertainties. In this article, we investigate whether it may be possible to assess the magnitude of the largest event using some statistical properties of seismic activity. Our analysis shows that, while local features are not appropriate for modeling the emergence of peaks of seismicity, some global properties (e.g., the global coefficient of variation of interevent times and the fractal dimension of epicenters) seem correlated with the largest magnitude. Unlike several scientific articles suggest, the b-value of the Gutenberg–Richter law is not observed to have a predictive power in this case, which can be explained in the light of heterogeneous tectonic settings hosting fault systems with different extension.

Suggested Citation

  • Zaccagnino, Davide & Telesca, Luciano & Doglioni, Carlo, 2023. "Global versus local clustering of seismicity: Implications with earthquake prediction," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s096007792300320x
    DOI: 10.1016/j.chaos.2023.113419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792300320X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seth Stein & Mian Liu, 2009. "Long aftershock sequences within continents and implications for earthquake hazard assessment," Nature, Nature, vol. 462(7269), pages 87-89, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Wang & Ian G. Main, 2023. "Strong historical earthquakes and their relationships with the Tan-Lu fault system and modern seismicity in eastern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 539-564, January.
    2. Yuxin Gao & Xianrui Yu & Menghao Xi & Qiuhong Zhao, 2023. "Assessment of Vulnerability Caused by Earthquake Disasters Based on DEA: A Case Study of County-Level Units in Chinese Mainland," Sustainability, MDPI, vol. 15(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s096007792300320x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.