IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009547.html
   My bibliography  Save this article

Fronts connecting stripe patterns with a uniform state: Zigzag coarsening dynamics, and pinning effect

Author

Listed:
  • Clerc, Marcel G.
  • Escaff, Daniel
  • Rojas, René G.

Abstract

The propagation of interfaces between different equilibria exhibits a rich dynamics and morphology, where stalactites and snowflakes are paradigmatic examples. Here, we study the stability features of flat fronts within the framework of the subcritical Newell–Whitehead–Segel equation. This universal amplitude equation accounts for stripe formation near a weakly inverted bifurcation and front solutions between a uniform state and a stripes pattern. We show that these domain walls are linearly unstable. The flat interface develops a transversal pattern-like structure with a well defined wavelength, later on, the transversal structure becomes a zigzag structure: This zigzag displays a coarsening dynamics, with the consequent growing of the wavelength. We study the relation between this interface instability and those exhibited by the interface connecting a stripes pattern with a uniform state in the theoretical framework of subcritical Swift–Hohenberg equation. A transversally flat wall domain could be stabilized by the pinning effect, this dynamical behavior is lost in the subcritical Newell–Whitehead–Segel approach. However, this flat interface is a metastable state and in the presence of noise the system develops a similar behavior to the subcritical Newell–Whitehead–Segel equation.

Suggested Citation

  • Clerc, Marcel G. & Escaff, Daniel & Rojas, René G., 2022. "Fronts connecting stripe patterns with a uniform state: Zigzag coarsening dynamics, and pinning effect," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009547
    DOI: 10.1016/j.chaos.2022.112775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Pattern formation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.