IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922006634.html
   My bibliography  Save this article

Chirped self-similar pulses and envelope solutions for a nonlinear Schrödinger's in optical fibers using Lie group method

Author

Listed:
  • Iskenderoglu, Gulistan
  • Kaya, Dogan

Abstract

In this work, we present an application of Lie group analysis to study the generalized derivative nonlinear Schrödinger equation, which governs the evolution of a nonlinear wave and plays an important role in the propagation of short pulses in optical fiber systems. To construct Lie group reductions, we study the symmetry properties and introduce various infinitesimal operators. Further, we obtain self-similar solutions and periodic soliton solutions of the generalized derivative nonlinear Schrödinger equation. This type of solution plays a vital role in the study of the blow-up and asymptotic behavior of non-global solutions. And at the end, we present graphs for each solution by considering the physical meaning of the solutions.

Suggested Citation

  • Iskenderoglu, Gulistan & Kaya, Dogan, 2022. "Chirped self-similar pulses and envelope solutions for a nonlinear Schrödinger's in optical fibers using Lie group method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006634
    DOI: 10.1016/j.chaos.2022.112453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922006634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daoui, Abdel Kader & Messouber, Abdelouahab & Triki, Houria & Zhou, Qin & Biswas, Anjan & Liu, Wenjun & Alzahrani, Abdullah K. & Belic, Milivoj R., 2021. "Propagation of chirped periodic and localized waves with higher-order effects through optical fibers," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Kumar, Sachin & Malik, Sandeep & Biswas, Anjan, 2020. "A re-visitation to reported results on optical solitons," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa, M. & Gandarias, M.L. & Niño-López, A. & Chulián, S., 2023. "Exact solutions through symmetry reductions for a high-grade brain tumor model with response to hypoxia," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seadawy, Aly R. & Rizvi, Syed T.R. & Sohail, Muhammad & Ali, Kashif, 2022. "Nonlinear model under anomalous dispersion regime: Chirped periodic and solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Yang, Sheng-Xiong & Wang, Yu-Feng & Zhang, Xi, 2023. "Conservation laws, Darboux transformation and localized waves for the N-coupled nonautonomous Gross–Pitaevskii equations in the Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Zhou, Qin & Triki, Houria & Xu, Jiakun & Zeng, Zhongliang & Liu, Wenjun & Biswas, Anjan, 2022. "Perturbation of chirped localized waves in a dual-power law nonlinear medium," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Rizvi, Syed T.R. & Seadawy, Aly R. & Raza, Umar, 2022. "Some advanced chirped pulses for generalized mixed nonlinear Schrödinger dynamical equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.