IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005288.html
   My bibliography  Save this article

Sensitivity of modeled tracer motion in tidal areas to numerics and to non-Hamiltonian perturbations

Author

Listed:
  • de Swart, H.E.
  • van der Wal, S.T.
  • Frank, J.E.
  • Schramkowski, G.P.

Abstract

This study focuses on the motion of passive tracers induced by the joint action of tidal and residual currents in shallow seas with an irregular bottom topography. Interest in this problem has rapidly increased in recent years, because of the detection of large-scale pollution of marine waters by plastics. Early simplified models considered advection of tracers by a two-dimensional depth-averaged velocity field that is solenoidal, thereby resulting in a system that is Hamiltonian and nonintegrable. Here, two new aspects are considered. First, the sensitivity of solutions to three different numerical schemes is investigated. To quantify the behavior of orbits, both the largest Lyapunov exponent and the K-coefficient of the zero-one test for chaos were calculated. It turns out that a new scheme, which extends a known symplectic scheme to systems that also contain non-Hamiltonian terms, performs best. The second aspect concerns the fact that a depth-averaged velocity field is actually divergent, thereby rendering the model of tracer motion to be non-Hamiltonian. It is demonstrated that the divergent velocity components, no matter how small, cause the appearance of attractors in the system and thus they have a strong impact on the fate of tracers. Interpretation of the numerical results is given by deriving and analyzing approximate analytical solutions of the system.

Suggested Citation

  • de Swart, H.E. & van der Wal, S.T. & Frank, J.E. & Schramkowski, G.P., 2022. "Sensitivity of modeled tracer motion in tidal areas to numerics and to non-Hamiltonian perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005288
    DOI: 10.1016/j.chaos.2022.112318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.