IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922003654.html
   My bibliography  Save this article

The nonlinear wave solutions and parameters discovery of the Lakshmanan-Porsezian-Daniel based on deep learning

Author

Listed:
  • Zhang, Yabin
  • Wang, Lei
  • Zhang, Peng
  • Luo, Haotian
  • Shi, Wanlin
  • Wang, Xin

Abstract

We apply the deep learning approach to learn some nonlinear wave solutions of the Lakshmanan-Porsezian-Daniel (LPD) model characterizing the evolution of ultrashort optical pulse in optical fibers. Based on the strong universal approximation theorem, we give the initial-boundary value data and residual collocation points, choose the parameters initialization Xavier method and parameters optimization Adam and L-BFGS algorithms to construct the optimal neural network model. Then, we derive the data-driven solutions of the rogue wave, anti-dark soliton, multi-peak soliton, non-rational W-shaped soliton, rational W-shaped soliton as well as periodic-wave solutions for the LPD model. Finally, we study the parameters discovery of such model via the anti-dark soliton solution with 1% perturbation (or without perturbation).

Suggested Citation

  • Zhang, Yabin & Wang, Lei & Zhang, Peng & Luo, Haotian & Shi, Wanlin & Wang, Xin, 2022. "The nonlinear wave solutions and parameters discovery of the Lakshmanan-Porsezian-Daniel based on deep learning," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003654
    DOI: 10.1016/j.chaos.2022.112155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Gang-Zhou & Fang, Yin & Wang, Yue-Yue & Wu, Guo-Cheng & Dai, Chao-Qing, 2021. "Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yin & Zhu, Bo-Wei & Bo, Wen-Bo & Wang, Yue-Yue & Dai, Chao-Qing, 2023. "Data-driven prediction of spatial optical solitons in fractional diffraction," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Wu, Gang-Zhou & Fang, Yin & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Pu, Jun-Cai & Chen, Yong, 2022. "Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Cai, Yue-Jin & Wu, Jian-Wen & Lin, Ji, 2022. "Nondegenerate N-soliton solutions for Manakov system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Fang, Yin & Bo, Wen-Bo & Wang, Ru-Ru & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Jaganathan, Meiyazhagan & Bakthavatchalam, Tamil Arasan & Vadivel, Murugesan & Murugan, Selvakumar & Balu, Gopinath & Sankarasubbu, Malaikannan & Ramaswamy, Radha & Sethuraman, Vijayalakshmi & Malomed, 2023. "Data-driven multi-valley dark solitons of multi-component Manakov Model using Physics-Informed Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Zhu, Bo-Wei & Fang, Yin & Liu, Wei & Dai, Chao-Qing, 2022. "Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Fang, Yin & Wu, Gang-Zhou & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.