IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v141y2020ics0960077920308018.html
   My bibliography  Save this article

Further results on delay-dependent stability for neutral singular systems via state decomposition method

Author

Listed:
  • Chen, Wenbin
  • Gao, Fang
  • She, Jinhua
  • Xia, Weifeng

Abstract

This paper studies the delay-dependent stability for neutral singular systems. In the light of state decomposition method, a novel augmented Lyapunov-Krasovskii functional including less decision variables is developed. Then by means of zero-value equations technology, some sufficient stability conditions in the form of linear matrix inequalities are acquired, which guarantees the non-impulsiveness, regularity and stability for the proposed neutral singular systems. The obtained stability criterion takes the sizes of both the discrete- and neutral- delays into account. They are less conservative than those presented by previous analytical approaches. Numerical examples are given to show the feasibility of our method and the interrelation between the discrete- and neutral- delays.

Suggested Citation

  • Chen, Wenbin & Gao, Fang & She, Jinhua & Xia, Weifeng, 2020. "Further results on delay-dependent stability for neutral singular systems via state decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920308018
    DOI: 10.1016/j.chaos.2020.110408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zhen-Hang & Chu, Yu-Ming & Zhang, Wen, 2019. "High accuracy asymptotic bounds for the complete elliptic integral of the second kind," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 552-564.
    2. Fangzheng Gao & Yuqiang Wu & Xin Yu, 2016. "Global state feedback stabilisation of stochastic high-order nonlinear systems with high-order and low-order nonlinearities," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3846-3856, December.
    3. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    4. S. Xu & J. Lam & P. Shi & E. K. Boukas & Y. Zou, 2009. "Guaranteed Cost Control for Uncertain Neutral Stochastic Systems via Dynamic Output Feedback Controllers," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 207-223, October.
    5. Jichun Wang & Qingling Zhang & Dong Xiao & Fang Bai, 2016. "Robust stability analysis and stabilisation of uncertain neutral singular systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3762-3771, December.
    6. Wenbin Chen & Fang Gao, 2019. "Stability analysis of systems via a new double free-matrix-based integral inequality with interval time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(14), pages 2663-2672, October.
    7. Weimin Chen & Qian Ma & Lanning Wang & Huiling Xu, 2018. "Stabilisation and control of neutral stochastic delay Markovian jump systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 58-67, January.
    8. Li, Hong & Li, Hou-biao & Zhong, Shou-ming, 2007. "Stability of neutral type descriptor system with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1796-1800.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Meng & Zhuang, Guangming & Xia, Jianwei & Wang, Yanqian & Chen, Guoliang, 2022. "Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Fu, Xiuwen & Sheng, Zhaoliang & Lin, Chong & Chen, Bing, 2022. "New results on admissibility and dissipativity analysis of descriptor time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    3. Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    3. Fangzheng Gao & Yuqiang Wu, 2017. "Finite-time output feedback stabilisation for a class of feedforward nonlinear systems with input saturation," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1254-1265, April.
    4. Bolat, Yaşar, 2009. "Oscillation of higher order neutral type nonlinear difference equations with forcing terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2973-2980.
    5. Tian, Junkang & Xiong, Lianglin & Liu, Jianxing & Xie, Xiangjun, 2009. "Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1858-1866.
    6. Qiu, Fang & Cui, Baotong & Ji, Yan, 2009. "Novel robust stability analysis for uncertain neutral system with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1820-1828.
    7. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "New robust stability condition for uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1073-1079.
    8. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    9. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "Novel robust stability criteria of uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 771-777.
    10. Jichun Wang & Qingling Zhang & Dong Xiao & Fang Bai, 2016. "Robust stability analysis and stabilisation of uncertain neutral singular systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3762-3771, December.
    11. Peng Shi & Yanyan Yin & Fei Liu, 2013. "Gain-Scheduled Worst-Case Control on Nonlinear Stochastic Systems Subject to Actuator Saturation and Unknown Information," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 844-858, March.
    12. Zhen-Hang Yang & Jing-Feng Tian & Ya-Ru Zhu, 2020. "A Rational Approximation for the Complete Elliptic Integral of the First Kind," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
    13. Shenping Xiao & Jin Yu & Simon X. Yang & Yongfeng Qiu, 2022. "Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions," Mathematics, MDPI, vol. 10(17), pages 1-9, August.
    14. Liang Liu & Yifan Zhang, 2017. "Decentralised output-feedback control for a class of large-scale stochastic high-order upper-triangular nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(4), pages 838-848, March.
    15. Li, Boren, 2015. "A further note on stability criteria for uncertain neutral systems with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 72-83.
    16. Karimi, Hamid Reza & Zapateiro, Mauricio & Luo, Ningsu, 2009. "Stability analysis and control synthesis of neutral systems with time-varying delays and nonlinear uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 595-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920308018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.