Author
Listed:
- Sonbhadra, Sanjay Kumar
- Agarwal, Sonali
- Nagabhushan, P.
Abstract
The novel coronavirus disease 2019 (COVID-19) began as an outbreak from epicentre Wuhan, People’s Republic of China in late December 2019, and till June 27, 2020 it caused 9,904,906 infections and 496,866 deaths worldwide. The world health organization (WHO) already declared this disease a pandemic. Researchers from various domains are putting their efforts to curb the spread of coronavirus via means of medical treatment and data analytics. In recent years, several research articles have been published in the field of coronavirus caused diseases like severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and COVID-19. In the presence of numerous research articles, extracting best-suited articles is time-consuming and manually impractical. The objective of this paper is to extract the activity and trends of coronavirus related research articles using machine learning approaches to help the research community for future exploration concerning COVID-19 prevention and treatment techniques. The COVID-19 open research dataset (CORD-19) is used for experiments, whereas several target-tasks along with explanations are defined for classification, based on domain knowledge. Clustering techniques are used to create the different clusters of available articles, and later the task assignment is performed using parallel one-class support vector machines (OCSVMs). These defined tasks describes the behavior of clusters to accomplish target-class guided mining. Experiments with original and reduced features validate the performance of the approach. It is evident that the k-means clustering algorithm, followed by parallel OCSVMs, outperforms other methods for both original and reduced feature space.
Suggested Citation
Sonbhadra, Sanjay Kumar & Agarwal, Sonali & Nagabhushan, P., 2020.
"Target specific mining of COVID-19 scholarly articles using one-class approach,"
Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
Handle:
RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305518
DOI: 10.1016/j.chaos.2020.110155
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305518. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.