IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920302824.html
   My bibliography  Save this article

Emulation circuits of fractional-order memelements with multiple pinched points and their applications

Author

Listed:
  • Khalil, Nariman A.
  • Said, Lobna A.
  • Radwan, Ahmed G.
  • Soliman, Ahmed M.

Abstract

This paper proposes voltage- and current-controlled universal memelements emulators. They are employed to realize the floating and grounded fractional-order memelements. The proposed emulators are implemented using different active blocks such as the second-generation current conveyor (CCII), Differential input double output transconductance amplifier (DOTA + ), balanced output CCII, and Differential voltage current conveyor (DVCC) with analog voltage multiplier. One of the main characteristics of the memristive elements is hysteresis loop behaviour with one pinched point, and the higher-order memelements have multiple pinched points. The higher fractional-order memductance (FOM) and inverse memductance (FOIM) emulators are proposed, which achieve multiple pinched-off points. The coordinates of the multiple pinched-off points and the conditions to achieve them are discussed in the I-V plane. Additionally, the effect of different orders α of the fractional-order capacitor (FOC) on the memelements characteristic is discussed. The circuit simulations for the proposed emulators have been verified using PSPICE simulations and validated experimentally at different orders. Finally, the grounded proposed emulator is employed in Chua's chaotic oscillator as an application presenting the effect of fractional-order on the chaotic response. Also, the floating proposed emulator is applied to a relaxation oscillator, to show the reliability of the proposed emulator.

Suggested Citation

  • Khalil, Nariman A. & Said, Lobna A. & Radwan, Ahmed G. & Soliman, Ahmed M., 2020. "Emulation circuits of fractional-order memelements with multiple pinched points and their applications," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302824
    DOI: 10.1016/j.chaos.2020.109882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaobo He & Santo Banerjee & Bo Yan, 2018. "Chaos and Symbol Complexity in a Conformable Fractional-Order Memcapacitor System," Complexity, Hindawi, vol. 2018, pages 1-15, August.
    2. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Kachia, Krunal & Solís-Pérez, J.E. & Gómez-Aguilar, J.F., 2020. "Chaos in a three-cell population cancer model with variable-order fractional derivative with power, exponential and Mittag-Leffler memories," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. AboAlNaga, BahaaAlDeen M. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2021. "Analysis and FPGA of semi-fractal shapes based on complex Gaussian map," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Mohamed, Sara M. & Sayed, Wafaa S. & Said, Lobna A. & Radwan, Ahmed G., 2022. "FPGA realization of fractals based on a new generalized complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    7. Wang, Jieyang & Mou, Jun & Xiong, Li & Zhang, Yingqian & Cao, Yinghong, 2021. "Fractional-order design of a novel non-autonomous laser chaotic system with compound nonlinearity and its circuit realization," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Jia, Hongyan & Liu, Jingwen & Li, Wei & Du, Meng, 2023. "A family of new generalized multi-scroll Hamiltonian conservative chaotic flows on invariant hypersurfaces and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Palit, Sanjay K. & Mukherjee, Sayan, 2021. "A study on dynamics and multiscale complexity of a neuro system," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.