Author
Listed:
- Montalva-Medel, Marco
- Rica, Sergio
- Urbina, Felipe
Abstract
An exact classification of the different dynamical behaviors that exhibits the phase space of a reversible and conservative cellular automaton, the so-called Q2R model, is shown in this paper. Q2R is a cellular automaton which is a dynamical variation of the Ising model in statistical physics and whose space of configurations grows exponentially with the system size. As a consequence of the intrinsic reversibility of the model, the phase space is composed only by configurations that belong to a fixed point or a cycle. In this work, we classify them in four types accordingly to well differentiated topological characteristics. Three of them –which we call of type S-I, S-II, and S-III– share a symmetry property, while the fourth, which we call of type AS does not. Specifically, we prove that any configuration of Q2R belongs to one of the four previous types of cycles. Moreover, at a combinatorial level, we can determine the number of cycles for some small periods which are almost always present in the Q2R. Finally, we provide a general overview of the resulting decomposition of the arbitrary size Q2R phase space and, in addition, we realize an exhaustive study of a small Ising system (4 × 4) which is thoroughly analyzed under this new framework, and where simple mathematical tools are introduced in order to have a more direct understanding of the Q2R dynamics and to rediscover known properties like the energy conservation.
Suggested Citation
Montalva-Medel, Marco & Rica, Sergio & Urbina, Felipe, 2020.
"Phase space classification of an Ising cellular automaton: The Q2R model,"
Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
Handle:
RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300175
DOI: 10.1016/j.chaos.2020.109618
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.