IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303340.html
   My bibliography  Save this article

Fractional discretization: The African’s tortoise walk

Author

Listed:
  • Atangana, Abdon

Abstract

We proposed a new way to discretizing a differential or integral equation using a fractional step. The new way has improved the stability and accuracy of numerical methods. We presented some examples with classical and fractional differential and integral equations.

Suggested Citation

  • Atangana, Abdon, 2020. "Fractional discretization: The African’s tortoise walk," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303340
    DOI: 10.1016/j.chaos.2019.109399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Araz, Seda İğret, 2019. "Analysis of a new partial integro-differential equation with mixed fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 257-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Nguiwa, Tchule & Kolaye, Gabriel Guilsou & Justin, Mibaile & Moussa, Djaouda & Betchewe, Gambo & Mohamadou, Alidou, 2021. "Dynamic study of SIAISQVR−B fractional-order cholera model with control strategies in Cameroon Far North Region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Abdo, Mohammed S. & Abdeljawad, Thabet & Ali, Saeed M. & Shah, Kamal & Jarad, Fahd, 2020. "Existence of positive solutions for weighted fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Khan, Zeshan Aslam & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor, 2022. "Generalized fractional strategy for recommender systems with chaotic ratings behavior," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Akgül, Ali & Siddique, Imran, 2021. "Analysis of MHD Couette flow by fractal-fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Riaz, M.B. & Iftikhar, N., 2020. "A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    14. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    4. Berhe, Hailay Weldegiorgis & Qureshi, Sania & Shaikh, Asif Ali, 2020. "Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Nisar, Kottakkaran Sooppy & Logeswari, K. & Ravichandran, C. & Sabarinathan, S., 2023. "New frame of fractional neutral ABC-derivative with IBC and mixed delay," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    6. Mohammad, Mutaz & Trounev, Alexander, 2020. "Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Martynyuk, Anatoliy A. & Stamov, Gani Tr. & Stamova, Ivanka M., 2020. "Fractional-like Hukuhara derivatives in the theory of set-valued differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.