IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v111y2018icp157-168.html
   My bibliography  Save this article

Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo

Author

Listed:
  • Wei, Zhouchao
  • Akgul, Akif
  • Kocamaz, Uğur Erkin
  • Moroz, Irene
  • Zhang, Wei

Abstract

Based on the segmented disc dynamo proposed by H. K. Moffatt, we give out the hidden chaotic attractors, which can show the imperfection in the dynamo model. In this paper. control of hidden chaos in the model is investigated by Lyapunov based nonlinear feedback controllers, sliding mode controllers and hybrid combination of them. Numerical simulations on the comparative analyses are presented. Moreover, with the aid of ORCAD-Pspice and oscilloscope, hidden chaos can be implemented by electronic circuit. Compared with the phase portraits using MATLAB, the simulation results of the oscilloscope outputs verify the effectiveness of electronic circuit design. Finally, in order to consider the effects of fractional order, we analyze the fractional order chaotic system (FOCS) and consider its FPGA implementation for the self-exciting homopolar disc dynamo. The results are helpful for us to better understand the dynamics behavior of disc dynamos.

Suggested Citation

  • Wei, Zhouchao & Akgul, Akif & Kocamaz, Uğur Erkin & Moroz, Irene & Zhang, Wei, 2018. "Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 157-168.
  • Handle: RePEc:eee:chsofr:v:111:y:2018:i:c:p:157-168
    DOI: 10.1016/j.chaos.2018.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918301656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    2. Chen, Hsien-Keng, 2005. "Global chaos synchronization of new chaotic systems via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1245-1251.
    3. Chang, Jen-Fuh & Hung, Meei-Ling & Yang, Yi-Sung & Liao, Teh-Lu & Yan, Jun-Juh, 2008. "Controlling chaos of the family of Rössler systems using sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 609-622.
    4. Peng, Chao-Chung & Chen, Chieh-Li, 2008. "Robust chaotic control of Lorenz system by backstepping design," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 598-608.
    5. Karthikeyan Rajagopal & Anitha Karthikeyan & Prakash Duraisamy, 2017. "Hyperchaotic Chameleon: Fractional Order FPGA Implementation," Complexity, Hindawi, vol. 2017, pages 1-16, May.
    6. Jin-Qing Fang & Yiguang Hong & Huashu Qin & Guanrong Chen, 2000. "Nonlinear control of chaotic systems:A switching manifold approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 4, pages 1-11, January.
    7. Yassen, M.T., 2005. "Controlling chaos and synchronization for new chaotic system using linear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 913-920.
    8. Karthikeyan Rajagopal & Laarem Guessas & Anitha Karthikeyan & Ashokkumar Srinivasan & Girma Adam, 2017. "Fractional Order Memristor No Equilibrium Chaotic System with Its Adaptive Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization," Complexity, Hindawi, vol. 2017, pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dutta, Maitreyee & Roy, Binoy Krishna, 2021. "A new memductance-based fractional-order chaotic system and its fixed-time synchronisation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    3. Nian, Fuzhong & Liu, Xinmeng & Zhang, Yaqiong, 2018. "Sliding mode synchronization of fractional-order complex chaotic system with parametric and external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 22-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fuchen & Shu, Yonglu & Yang, Hongliang & Li, Xiaowu, 2011. "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 137-144.
    2. Yu, Yongguang, 2008. "Adaptive synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 329-333.
    3. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    4. Chen, Heng-Hui, 2009. "Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 466-473.
    5. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Zhang, Qunjiao & Lu, Jun-an, 2008. "Chaos synchronization of a new chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 175-179.
    7. Yang, Li-Xin & Chu, Yan-Dong & Zhang, Jian-Gang & Li, Xian-Feng, 2009. "Chaos synchronization of coupled hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 724-730.
    8. Li, Damei & Wang, Pei & Lu, Jun-an, 2009. "Some synchronization strategies for a four-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2553-2559.
    9. Wang, Bo & Wen, Guangjun, 2009. "On the synchronization of uncertain master–slave chaotic systems with disturbance," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 145-151.
    10. Park, Ju H., 2005. "On synchronization of unified chaotic systems via nonlinear Control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 699-704.
    11. Chang, Wei-Der, 2009. "PID control for chaotic synchronization using particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 910-917.
    12. Yang, Li-Xin & Chu, Yan-Dong & Zhang, Jian-Gang & Li, Xian-Feng & Chang, Ying-Xiang, 2009. "Chaos synchronization in autonomous chaotic system via hybrid feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 214-223.
    13. Ge, Zheng-Ming & Jhuang, Wei-Ren, 2007. "Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 270-289.
    14. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "On anti-synchronization of chaotic systems via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 170-179.
    15. Chen, Juhn-Horng & Chen, Hsien-Keng & Lin, Yu-Kai, 2009. "Synchronization and anti-synchronization coexist in Chen–Lee chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 707-716.
    16. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    17. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    18. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    19. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Chen, Hsien-Keng, 2005. "Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1049-1056.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:111:y:2018:i:c:p:157-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.