IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp433-440.html
   My bibliography  Save this article

Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity

Author

Listed:
  • Ionescu, Clara
  • Kelly, James F.

Abstract

This paper presents a synopsis of fractional calculus tools for characterising respiratory mechanics. A discussion on power law impedance, viscoelasticity and tissue heterogeneity is made based on morphological and structural properties of lungs. Although targeted towards respiratory system applications, these tools can serve as a basis for modelling other biological structures as well. The paper underlines the importance of characterising the viscoelastic properties of the respiratory tissue and its time-varying properties as a function of disease progress. Perspectives are suggested for developing models able to mimic disease progression and understand treatment effects for better therapeutic management.

Suggested Citation

  • Ionescu, Clara & Kelly, James F., 2017. "Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 433-440.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:433-440
    DOI: 10.1016/j.chaos.2017.03.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Mauroy & M. Filoche & E. R. Weibel & B. Sapoval, 2004. "An optimal bronchial tree may be dangerous," Nature, Nature, vol. 427(6975), pages 633-636, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Templos-Hernández, Diana J. & Quezada-Téllez, Luis A. & González-Hernández, Brian M. & Rojas-Vite, Gerardo & Pineda-Sánchez, José E. & Fernández-Anaya, Guillermo & Rodriguez-Torres, Erika E., 2021. "A fractional-order approach to cardiac rhythm analysis," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Abdelkawy, M.A. & Lopes, António M. & Babatin, Mohammed M., 2020. "Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Tabatabaei, S. Sepehr & Dehghan, Mohammad Reza & Talebi, Heidar Ali, 2022. "Real-time prediction of soft tissue deformation; a non-integer order modeling scheme and a practical verification for the theoretical concept," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Rodríguez-Cuadrado, Javier & San Martín, Jesús, 2021. "Fractal equilibrium configuration of a mechanically loaded binary tree," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Can Uçar & Dmitrii Kamenev & Kazunori Sunadome & Dominik Fachet & Francois Lallemend & Igor Adameyko & Saida Hadjab & Edouard Hannezo, 2021. "Theory of branching morphogenesis by local interactions and global guidance," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Jinxiang Xi & Weizhong Zhao & Jiayao Eddie Yuan & JongWon Kim & Xiuhua Si & Xiaowei Xu, 2015. "Detecting Lung Diseases from Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:433-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.