IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v508y2026ics0096300325003406.html
   My bibliography  Save this article

An identifying operation on a 1-planar graph with an application to acyclic coloring

Author

Listed:
  • Tan, Qiuyue
  • Qiu, Haizhen
  • Wang, Yiqiao
  • Wang, Kan

Abstract

This paper introduces a graph operation and gives its applications. Given a 1-plane graph M and its crossing point x formed by two crossing edges uu′ and vv′, an Identifying Operation with respect to x is defined in two steps: (1) identifying u and v such that x vanishes; (2) deleting loops and multi-edges (if exists). Using Identifying Operation to every crossing point, we change M into its associated plane graph M⁎. Under some conditions, we show that χa(M)≤2χa(M⁎), where the parameters χa(M) and χa(M⁎) represent the acyclic-chromatic-number of M and M⁎, respectively. This generalizes a result established by Yang et al. in 2018.

Suggested Citation

  • Tan, Qiuyue & Qiu, Haizhen & Wang, Yiqiao & Wang, Kan, 2026. "An identifying operation on a 1-planar graph with an application to acyclic coloring," Applied Mathematics and Computation, Elsevier, vol. 508(C).
  • Handle: RePEc:eee:apmaco:v:508:y:2026:i:c:s0096300325003406
    DOI: 10.1016/j.amc.2025.129614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325003406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:508:y:2026:i:c:s0096300325003406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.