IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v507y2025ics0096300325002917.html
   My bibliography  Save this article

Decoding rhythmic complexity: A nonlinear dynamics approach via visibility graphs for classifying asymmetrical rhythmic frameworks of Turkish classical music

Author

Listed:
  • Mirza, Fuat Kaan
  • Baykaş, Tunçer
  • Hekimoğlu, Mustafa
  • Pekcan, Önder
  • Tunçay, Gönül Paçacı

Abstract

The non-isochronous, hierarchical rhythmic cycles (usuls) of Turkish Classical Music (TCM) exhibit emergent temporal structures that challenge conventional rhythm analysis based on metrical regularity. To address this challenge, this study presents a complexity-oriented framework for usul classification, grounded in nonlinear time series analysis and network-based representations. Rhythmic signals are processed through energy envelope extraction, diffusion entropy analysis, and spectral transformations to capture multiscale temporal dynamics. Visibility graphs (VGs) are constructed from these representations to encode underlying structural complexity and temporal dependencies. Features derived from VG adjacency matrices serve as complexity-sensitive descriptors and enable high-accuracy classification (0.99) across 40 usul classes and 628 compositions. Energy envelope-derived graphs provide the most discriminative information, highlighting the importance of amplitude modulation in encoding rhythmic structure. Beyond classification, the analysis reveals self-organizing patterns and signatures of complexity, such as quasi-periodicity, scale-dependent variability, and entropy saturation, suggesting that usuls function as adaptive, nonlinear systems rather than metrically constrained patterns. The topological features extracted from the resulting graphs align with theoretical constructs from complexity science, such as modularity and long-range temporal correlations. This positions usul as an exemplary case for studying structured temporal complexity in cultural artifacts through the lens of dynamical systems. These findings contribute to computational rhythm analysis by demonstrating the efficacy of complexity measures in characterizing culturally specific rhythmic systems.

Suggested Citation

  • Mirza, Fuat Kaan & Baykaş, Tunçer & Hekimoğlu, Mustafa & Pekcan, Önder & Tunçay, Gönül Paçacı, 2025. "Decoding rhythmic complexity: A nonlinear dynamics approach via visibility graphs for classifying asymmetrical rhythmic frameworks of Turkish classical music," Applied Mathematics and Computation, Elsevier, vol. 507(C).
  • Handle: RePEc:eee:apmaco:v:507:y:2025:i:c:s0096300325002917
    DOI: 10.1016/j.amc.2025.129565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325002917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:507:y:2025:i:c:s0096300325002917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.