IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v500y2025ics0096300325001663.html
   My bibliography  Save this article

Weak degeneracy of the square of K4-minor free graphs

Author

Listed:
  • Ye, Jing
  • Zou, Jiani
  • Han, Miaomiao

Abstract

A graph G is called weakly f-degenerate with respect to a function f from V(G) to the non-negative integers, if every vertex of G can be successively removed through a series of valid Delete and DeleteSave operations. The weak degeneracy wd(G) is defined as the smallest integer d for which G is weakly d-degenerate, where d is a constant function. It was demonstrated that one plus the weak degeneracy can act as an upper bound for list-chromatic number and DP-chromatic number. Let κ(G2)=Δ(G)+2 if 2≤Δ(G)≤3, and κ(G2)=⌊3Δ(G)2⌋ if Δ(G)≥4. In this paper, we prove that for every K4-minor free graph G, wd(G2)≤κ(G2), which implies that G2 is (κ(G2)+1)-choosable and (κ(G2)+1)-DP-colorable. This work generalizes the result obtained by Lih et al. in [Discrete Mathematics, 269 (2003), 303-309] and Hetherington et al. in [Discrete Mathematics, 308 (2008), 4037-4043].

Suggested Citation

  • Ye, Jing & Zou, Jiani & Han, Miaomiao, 2025. "Weak degeneracy of the square of K4-minor free graphs," Applied Mathematics and Computation, Elsevier, vol. 500(C).
  • Handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001663
    DOI: 10.1016/j.amc.2025.129439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325001663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Weak degeneracy; K4-minor free graphs; Square graphs;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.