Explicit solutions and finite-time stability for fractional delay systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2025.129388
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ahmed M. Elshenhab & Xingtao Wang & Clemente Cesarano & Barakah Almarri & Osama Moaaz, 2022. "Finite-Time Stability Analysis of Fractional Delay Systems," Mathematics, MDPI, vol. 10(11), pages 1-11, May.
- Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.
- Si, Yuanchao & Wang, JinRong & Fečkan, Michal, 2020. "Controllability of linear and nonlinear systems governed by Stieltjes differential equations," Applied Mathematics and Computation, Elsevier, vol. 376(C).
- Elshenhab, Ahmed M. & Wang, Xing Tao, 2021. "Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices," Applied Mathematics and Computation, Elsevier, vol. 410(C).
- Nazim I. Mahmudov & Amal M. Almatarneh, 2020. "Stability of Ulam–Hyers and Existence of Solutions for Impulsive Time-Delay Semi-Linear Systems with Non-Permutable Matrices," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
- Ahmed M. Elshenhab & Xingtao Wang & Omar Bazighifan & Jan Awrejcewicz, 2022. "Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
- Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed M. Elshenhab & Xingtao Wang & Clemente Cesarano & Barakah Almarri & Osama Moaaz, 2022. "Finite-Time Stability Analysis of Fractional Delay Systems," Mathematics, MDPI, vol. 10(11), pages 1-11, May.
- Barakah Almarri & Xingtao Wang & Ahmed M. Elshenhab, 2022. "Controllability of Stochastic Delay Systems Driven by the Rosenblatt Process," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
- Aydin, Mustafa & Mahmudov, Nazim I., 2022. "On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Ahmed M. Elshenhab & Xingtao Wang & Omar Bazighifan & Jan Awrejcewicz, 2022. "Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
- Huang, Jizhao & Luo, Danfeng & Zhu, Quanxin, 2023. "Relatively exact controllability for fractional stochastic delay differential equations of order κ∈(1,2]," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Kui Liu & Michal Fečkan & D. O’Regan & JinRong Wang, 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
- Ahmed M. Elshenhab & Xingtao Wang, 2022. "Controllability and Hyers–Ulam Stability of Differential Systems with Pure Delay," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
- Touria Karite & Adil Khazari & Delfim F. M. Torres, 2022. "Regional Controllability and Minimum Energy Control of Delayed Caputo Fractional-Order Linear Systems," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
- Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Christopher N. Angstmann & Stuart-James M. Burney & Bruce I. Henry & Byron A. Jacobs & Zhuang Xu, 2023. "A Systematic Approach to Delay Functions," Mathematics, MDPI, vol. 11(21), pages 1-34, November.
- Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
- Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Eva Kaslik & Mihaela Neamţu & Anca Rădulescu, 2022. "Preface to the Special Issue on “Advances in Differential Dynamical Systems with Applications to Economics and Biology”," Mathematics, MDPI, vol. 10(19), pages 1-3, September.
- Hristo Kiskinov & Mariyan Milev & Andrey Zahariev, 2022. "About the Resolvent Kernel of Neutral Linear Fractional System with Distributed Delays," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
- Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Du, Feifei & Jia, Baoguo, 2020. "Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Wang, Mei & Du, Feifei & Chen, Churong & Jia, Baoguo, 2019. "Asymptotic stability of (q, h)-fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 158-167.
- Ahmed Salem & Rawia Babusail, 2022. "Finite-Time Stability in Nonhomogeneous Delay Differential Equations of Fractional Hilfer Type," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
- Xu, Changjin & Liao, Maoxin & Li, Peiluan & Guo, Ying & Xiao, Qimei & Yuan, Shuai, 2019. "Influence of multiple time delays on bifurcation of fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 565-582.
- Lu, Qiu & Xiao, Min & Tao, Binbin & Huang, Chengdai & Shi, Shuo & Wang, Zhengxin & Jiang, Guoping, 2019. "Complex dynamic behaviors of a congestion control system under a novel PD1n control law: Stability, bifurcation and periodic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 242-252.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:498:y:2025:i:c:s0096300325001158. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.