IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v489y2025ics0096300324005976.html
   My bibliography  Save this article

A finite difference method with symmetry properties for the high-dimensional Bratu equation

Author

Listed:
  • Shahab, Muhammad Luthfi
  • Susanto, Hadi
  • Hatzikirou, Haralampos

Abstract

Solving the three-dimensional (3D) Bratu equation is highly challenging due to the presence of multiple and sharp solutions. Research on this equation began in the late 1990s, but there are no satisfactory results to date. To address this issue, we introduce a symmetric finite difference method (SFDM) which embeds the symmetry properties of the solutions into a finite difference method (FDM). This SFDM is primarily used to obtain more accurate solutions and bifurcation diagrams for the 3D Bratu equation. Additionally, we propose modifying the Bratu equation by incorporating a new constraint that facilitates the construction of bifurcation diagrams and simplifies handling the turning points. The proposed method, combined with the use of sparse matrix representation, successfully solves the 3D Bratu equation on grids of up to 3013 points. The results demonstrate that SFDM outperforms all previously employed methods for the 3D Bratu equation. Furthermore, we provide bifurcation diagrams for the 1D, 2D, 4D, and 5D cases, and accurately identify the first turning points in all dimensions. All simulations indicate that the bifurcation diagrams of the Bratu equation on the cube domains closely resemble the well-established behavior on the ball domains described by Joseph and Lundgren [1]. Furthermore, when SFDM is applied to linear stability analysis, it yields the same largest real eigenvalue as the standard FDM despite having fewer equations and variables in the nonlinear system.

Suggested Citation

  • Shahab, Muhammad Luthfi & Susanto, Hadi & Hatzikirou, Haralampos, 2025. "A finite difference method with symmetry properties for the high-dimensional Bratu equation," Applied Mathematics and Computation, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324005976
    DOI: 10.1016/j.amc.2024.129136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324005976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.