IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v488y2025ics0096300324006088.html
   My bibliography  Save this article

A fully discrete GL-ADI scheme for 2D time-fractional reaction-subdiffusion equation

Author

Listed:
  • Jiang, Yubing
  • Chen, Hu
  • Huang, Chaobao
  • Wang, Jian

Abstract

Alternating direction implicit (ADI) difference method for solving a 2D reaction-subdiffusion equation whose solution behaves a weak singularity at t=0 is studied in this paper. A Grünwald-Letnikov (GL) approximation is used for the discretization of Caputo fractional derivative (of order α, with 0<α<1) on a uniform mesh. Stability and convergence of the fully discrete ADI scheme are rigorously established. With the help of a discrete fractional Gronwall inequality, we get the sharp error estimate. The stability in L2 norm and the convergence of the GL-ADI scheme are strictly proved, where the convergent order is O(τtsα−1+τ2α+h12+h22). Numerical experiments are given to verify the theoretical analysis.

Suggested Citation

  • Jiang, Yubing & Chen, Hu & Huang, Chaobao & Wang, Jian, 2025. "A fully discrete GL-ADI scheme for 2D time-fractional reaction-subdiffusion equation," Applied Mathematics and Computation, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324006088
    DOI: 10.1016/j.amc.2024.129147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamran Zakaria & Saeed Hafeez, 2020. "Options Pricing for Two Stocks by Black Sholes Time Fractional Order NonLinear Partial Differential Equation," Papers 2010.13411, arXiv.org.
    2. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isra Al-Shbeil & Noureddine Djenina & Ali Jaradat & Abdallah Al-Husban & Adel Ouannas & Giuseppe Grassi, 2023. "A New COVID-19 Pandemic Model including the Compartment of Vaccinated Individuals: Global Stability of the Disease-Free Fixed Point," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    2. Sotiris K. Ntouyas & Bashir Ahmad & Jessada Tariboon, 2022. "( k , ψ )-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    3. Amar Nath Chatterjee & Fahad Al Basir & Bashir Ahmad & Ahmed Alsaedi, 2022. "A Fractional-Order Compartmental Model of Vaccination for COVID-19 with the Fear Factor," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    4. Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Guirao, Juan L.G. & Saeed, Tareq, 2021. "Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Marisa Kaewsuwan & Rachanee Phuwapathanapun & Weerawat Sudsutad & Jehad Alzabut & Chatthai Thaiprayoon & Jutarat Kongson, 2022. "Nonlocal Impulsive Fractional Integral Boundary Value Problem for ( ρ k , ϕ k )-Hilfer Fractional Integro-Differential Equations," Mathematics, MDPI, vol. 10(20), pages 1-40, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324006088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.