IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v469y2024ics0096300324000031.html
   My bibliography  Save this article

Fuzzy adaptive resilient decentralized control of nonlinear interconnected cyber-physical systems under false data injection attacks

Author

Listed:
  • Fan, Xianrui
  • Tong, Shaocheng

Abstract

In this paper, a new fuzzy adaptive resilient decentralized control method is presented for the nonlinear interconnected cyber-physical systems under false data injection (FDI) attacks. Fuzzy logic systems (FLS) are used to model unknown nonlinear dynamics and the FDI attacks are represented by the sum of the system states and unknown time-varying bounded functions. To deal with the problem of the system states are unavailable under FDI attacks, a new coordinate transformation is proposed for control design. By using the backstepping control design theory and Nussbaum function property, a fuzzy adaptive resilient decentralized control scheme is developed, where the Nussbaum functions are employed to deal with the unknown time-varying weight. Then, the stability of the controlled systems is proved by constructing a appropriate Lyapunov function. Finally, the effectiveness of the proposed fuzzy adaptive resilient decentralized control scheme is verified by the simulation and comparison results.

Suggested Citation

  • Fan, Xianrui & Tong, Shaocheng, 2024. "Fuzzy adaptive resilient decentralized control of nonlinear interconnected cyber-physical systems under false data injection attacks," Applied Mathematics and Computation, Elsevier, vol. 469(C).
  • Handle: RePEc:eee:apmaco:v:469:y:2024:i:c:s0096300324000031
    DOI: 10.1016/j.amc.2024.128531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324000031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:469:y:2024:i:c:s0096300324000031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.