IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v425y2022ics0096300322001369.html

Signless Laplacian state transfer on Q-graphs

Author

Listed:
  • Zhang, Xiao-Qin
  • Cui, Shu-Yu
  • Tian, Gui-Xian

Abstract

For a simple graph G, its Q-graph Q(G) is derived from G by adding one new point in every edge of G and linking two new vertices by edge if they are between two edges that having a common endpoint. In our work, we demonstrate that for a regular graph G, if all the signless Laplacian eigenvalues are integers, then the Q(G) exists no signless Laplacian perfect state transfer. We also present a sufficient restriction that the Q(G) admits signless Laplacian pretty good state transfer when G exhibits signless Laplacian perfect state transfer between two specific vertices for a regular graph G. In addition, in view of these results, we also present some new families of Q-graphs, which have no signless Laplacian perfect state transfer, but admit signless Laplacian pretty good state transfer.

Suggested Citation

  • Zhang, Xiao-Qin & Cui, Shu-Yu & Tian, Gui-Xian, 2022. "Signless Laplacian state transfer on Q-graphs," Applied Mathematics and Computation, Elsevier, vol. 425(C).
  • Handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001369
    DOI: 10.1016/j.amc.2022.127070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. van Dam, E.R. & Haemers, W.H., 2002. "Which Graphs are Determined by their Spectrum?," Discussion Paper 2002-66, Tilburg University, Center for Economic Research.
    2. Li, Yipeng & Liu, Xiaogang & Zhang, Shenggui, 2020. "Laplacian state transfer in Q-graph," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyun Yang & Ligong Wang, 2020. "Laplacian Spectral Characterization of (Broken) Dandelion Graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 915-933, September.
    2. Haemers, W.H., 2005. "Matrices and Graphs," Other publications TiSEM 94b6bd28-71e7-41d3-b978-c, Tilburg University, School of Economics and Management.
    3. van Dam, E.R., 2008. "The spectral excess theorem for distance-regular graphs : A global (over)view," Other publications TiSEM 35daf99b-ad28-4e21-8b1f-6, Tilburg University, School of Economics and Management.
    4. B. R. Rakshith, 2022. "Signless Laplacian spectral characterization of some disjoint union of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 233-245, March.
    5. van Dam, E.R. & Omidi, G.R., 2011. "Graphs whose normalized laplacian has three eigenvalues," Other publications TiSEM d3b7fa76-22b5-4a9a-8706-a, Tilburg University, School of Economics and Management.
    6. Xue, Jie & Liu, Shuting & Shu, Jinlong, 2018. "The complements of path and cycle are determined by their distance (signless) Laplacian spectra," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 137-143.
    7. van Dam, E.R. & Haemers, W.H. & Koolen, J.H., 2006. "Cospectral Graphs and the Generalized Adjacency Matrix," Discussion Paper 2006-31, Tilburg University, Center for Economic Research.
    8. R. Pavithra & R. Rajkumar, 2021. "Spectra of M-edge rooted product of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(4), pages 1235-1255, December.
    9. Yuan, Bo-Jun & Wang, Yi & Xu, Jing, 2020. "Characterizing the mixed graphs with exactly one positive eigenvalue and its application to mixed graphs determined by their H-spectra," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    10. Chesnokov, A.A. & Haemers, W.H., 2005. "Regularity and the Generalized Adjacency Spectra of Graphs," Other publications TiSEM abb5a199-ef7c-4401-9eff-f, Tilburg University, School of Economics and Management.
    11. Aouchiche, Mustapha & Hansen, Pierre, 2018. "Cospectrality of graphs with respect to distance matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 309-321.
    12. Haemers, W.H. & Ramezani, F., 2009. "Graphs Cospectral with Kneser Graphs," Discussion Paper 2009-76, Tilburg University, Center for Economic Research.
    13. Estrada, Ernesto, 2007. "Graphs (networks) with golden spectral ratio," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1168-1182.
    14. van Dam, E.R. & Haemers, W.H. & Koolen, J.H., 2006. "Cospectral Graphs and the Generalized Adjacency Matrix," Other publications TiSEM 734d4054-b542-47a6-b1e8-c, Tilburg University, School of Economics and Management.
    15. Jia Wei & Jing Wang, 2022. "Spectra of Complemented Triangulation Graphs," Mathematics, MDPI, vol. 10(17), pages 1-9, September.
    16. Haemers, W.H. & Omidi, G.R., 2010. "Universal Adjacency Matrices with Two Eigenvalues," Other publications TiSEM 932a73a8-9fae-44ec-9ce5-7, Tilburg University, School of Economics and Management.
    17. Chesnokov, A.A. & Haemers, W.H., 2005. "Regularity and the Generalized Adjacency Spectra of Graphs," Discussion Paper 2005-124, Tilburg University, Center for Economic Research.
    18. van Dam, E.R. & Haemers, W.H., 2010. "An Odd Characterization of the Generalized Odd Graphs," Other publications TiSEM 2478f418-ae83-4ac3-8742-2, Tilburg University, School of Economics and Management.
    19. Fei Wen & You Zhang & Muchun Li, 2019. "Spectra of Subdivision Vertex-Edge Join of Three Graphs," Mathematics, MDPI, vol. 7(2), pages 1-19, February.
    20. Haemers, W.H. & Omidi, G.R., 2010. "Universal Adjacency Matrices with Two Eigenvalues," Discussion Paper 2010-119, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.