Author
Listed:
- Lang, Rongling
- Fan, Ya
- Liu, Guoliang
- Liu, Guodong
Abstract
Lung sounds convey valuable information relevant to human respiratory health. Therefore, it is important to classify lung sounds for early diagnoses of respiratory disorders. In recent years, computerized lung sound analysis with machine learning algorithms has attracted researchers, especially the state-of-the-art convolutional neural network (CNN). However, most of these algorithms require a large number of labeled respiratory sound samples, which is time- and cost-consuming. Based on a four-layers CNN, this study proposes graph semi-supervised CNNs (GS-CNNs), which can classify respiratory sounds into normal, crackle and wheeze ones with only a small labeled sample size and a large unlabeled sample size. The graph of respiratory sounds (Graph-RS) with labeled and unlabeled respiratory sound samples as vertexes is first constructed, which can indicate not only the reasonable metric information but also the relationship of all the samples. Then, GS-CNNs are developed by adding the information extracted from Graph-RS to the loss function of the original CNN. The added information enables the GS-CNNs to regulate the structure of the original CNN, thus enhancing classification accuracy. The GS-CNNs are evaluated by experiments with the samples collected by electronic stethoscope. Results demonstrate that the proposed GS-CNNs outperform the original CNN, and that the more information from Graph-RS is used, the better recognition effect will be achieved.
Suggested Citation
Lang, Rongling & Fan, Ya & Liu, Guoliang & Liu, Guodong, 2021.
"Analysis of unlabeled lung sound samples using semi-supervised convolutional neural networks,"
Applied Mathematics and Computation, Elsevier, vol. 411(C).
Handle:
RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006007
DOI: 10.1016/j.amc.2021.126511
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006007. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.