IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v374y2020ics0096300319310112.html
   My bibliography  Save this article

On local stability of stochastic delay nonlinear discrete systems with state-dependent noise

Author

Listed:
  • Diblík, J.
  • Rodkina, A.
  • Šmarda, Z.

Abstract

We examine the local stability of solutions of a delay stochastic nonlinear difference equation with deterministic and state-dependent Gaussian perturbations. We apply the degenerate Lyapunov–Krasovskii functional technique and construct a sequence of events, each term of which is defined by a bound on a normally distributed random variable. Local stability holds on the intersection of these events, which has probability at least 1−γ,γ ∈ (0, 1). This probability can be made arbitrarily high by choosing the initial value sufficiently small. We also present a generalization to systems where a condition for stability is expressed in terms of the diagonal part of the unperturbed system, and computer simulations which illustrate our results.

Suggested Citation

  • Diblík, J. & Rodkina, A. & Šmarda, Z., 2020. "On local stability of stochastic delay nonlinear discrete systems with state-dependent noise," Applied Mathematics and Computation, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:apmaco:v:374:y:2020:i:c:s0096300319310112
    DOI: 10.1016/j.amc.2019.125019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319310112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.125019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:374:y:2020:i:c:s0096300319310112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.