IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v359y2019icp132-147.html
   My bibliography  Save this article

Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions

Author

Listed:
  • Wang, Xiufang
  • Yu, Haiyan
  • Li, Gang
  • Gao, Jinmei

Abstract

In this research, by means of a discontinuity indicator to detect troubled cells, we propose hybrid finite volume weighted essentially non-oscillatory schemes in combination with linear central schemes for hyperbolic conservation laws. In smooth regions, we apply the simple linear central schemes to save CPU time. While in discontinuous regions, we adopt WENO schemes to maintain the essentially non-oscillatory property near discontinuities. Extensive numerical examples strongly suggest that the proposed hybrid schemes can save computational cost considerably in comparison with the same order pure WENO schemes and keep steep discontinuity transition at the same time.

Suggested Citation

  • Wang, Xiufang & Yu, Haiyan & Li, Gang & Gao, Jinmei, 2019. "Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 132-147.
  • Handle: RePEc:eee:apmaco:v:359:y:2019:i:c:p:132-147
    DOI: 10.1016/j.amc.2019.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319303078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xin & Huang, Lintao & Qin, Xueyu & Qu, Feng & Yan, Chao, 2023. "An efficient finite difference IFWENO-THINC hybrid scheme for capturing discontinuities," Applied Mathematics and Computation, Elsevier, vol. 446(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:359:y:2019:i:c:p:132-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.