IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v350y2019icp266-282.html
   My bibliography  Save this article

An extension of DG methods for hyperbolic problems to one-dimensional semi-infinite domains

Author

Listed:
  • Benacchio, Tommaso
  • Bonaventura, Luca

Abstract

We consider spectral discretizations of hyperbolic problems on unbounded domains using Laguerre basis functions. Taking as model problem the scalar advection equation, we perform a comprehensive stability analysis that includes strong collocation formulations, nodal and modal weak formulations, with either inflow or outflow boundary conditions, using either Gauss–Laguerre or Gauss–Laguerre–Radau quadrature and based on either scaled Laguerre functions or scaled Laguerre polynomials. We show that some of these combinations give rise to intrinsically unstable discretizations, while the combination of scaled Laguerre functions with Gauss–Laguerre–Radau quadrature appears to be stable for both strong and weak formulations. We then show how a modal discretization approach for hyperbolic systems on an unbounded domain can be naturally and seamlessly coupled to a discontinuous finite element discretization on a finite domain. An example of one dimensional hyperbolic system is solved with the proposed domain decomposition technique. The errors obtained with the proposed approach are found to be small, enabling the use of the coupled scheme for the simulation of Rayleigh damping layers in the semi-infinite part. Energy errors and reflection ratios of the scheme in absorbing wavetrains and single Gaussian signals show that a small number of modes in the semi-infinite domain are sufficient to damp the waves. The theoretical insight and numerical results corroborate previous findings by the authors and establish the scaled Laguerre functions-based discretization as a flexible and efficient tool for absorbing layers as well as for the accurate simulation of waves in unbounded regions.

Suggested Citation

  • Benacchio, Tommaso & Bonaventura, Luca, 2019. "An extension of DG methods for hyperbolic problems to one-dimensional semi-infinite domains," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 266-282.
  • Handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:266-282
    DOI: 10.1016/j.amc.2018.12.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318311184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:266-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.