IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v297y2017icp61-73.html
   My bibliography  Save this article

Fast weighted TV denoising via an edge driven metric

Author

Listed:
  • Lazzaro, Damiana

Abstract

In this paper we propose a new Fast Weighted Total Variation denoising approach, where we introduce edge driven weights in the standard TV discrete regularizer and a non Euclidean metric in the discrepancy term, induced by a positive definite matrix B, strictly related to the weights. In this way the fidelity constraint is adapted according to “edgeness” of each pixel. The corresponding minimization problem is iteratively solved by using the Split-Bregman strategy, in which, due to the particular choice of the structure of the positive definite matrix involved in the measure of the fidelity term, the optimality conditions imposed for the computation of the minimum are reduced to simple assignments, since all variables are decoupled. For its solution we propose a Fast Weighted Total Variation (FWTV) algorithm and, moreover, we prove its convergence. Several experiments demonstrate that the FWTV algorithm outperforms, both in terms of accuracy and execution times, the performance of the Weighted Split-Bregman denoising approach, where the ℓ2− norm is used in order to measure the fidelity term. In the case of synthetic images, the proposed algorithm is better respect to the best-state-of-art algorithms, but the methods not based on TV minimization give better performances with respect to our proposal in the case of natural images.

Suggested Citation

  • Lazzaro, Damiana, 2017. "Fast weighted TV denoising via an edge driven metric," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 61-73.
  • Handle: RePEc:eee:apmaco:v:297:y:2017:i:c:p:61-73
    DOI: 10.1016/j.amc.2016.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316306373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:297:y:2017:i:c:p:61-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.