IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp144-162.html
   My bibliography  Save this article

Superconvergence and a posteriori error estimates of the DG method for scalar hyperbolic problems on Cartesian grids

Author

Listed:
  • Baccouch, Mahboub

Abstract

In this paper, we analyze the discontinuous Galerkin (DG) finite element method for the steady two-dimensional transport-reaction equation on Cartesian grids. We prove the L2 stability and optimal L2 error estimates for the DG scheme. We identify a special numerical flux for which the L2-norm of the solution is of order p + 1, when tensor product polynomials of degree at most p are used. We further prove superconvergence towards a particular projection of the directional derivative. The order of superconvergence is proved to be p + 1/2. We also provide a very simple derivative recovery formula which is O(hp+1) superconvergent approximation to the directional derivative. Moreover, we establish an O(h2p+1) global superconvergence for the solution flux at the outflow boundary of the domain. These results are used to construct asymptotically exact a posteriori error estimates for the directional derivative approximation by solving a local problem on each element. Finally, we prove that the proposed a posteriori DG error estimates converge to the true errors in the L2-norm at O(hp+1) rate and that the global effectivity index converges to unity at O(h) rate. Our results are valid without the flow condition restrictions. We perform numerical experiments to demonstrate that theoretical rates proved in this paper are optimal.

Suggested Citation

  • Baccouch, Mahboub, 2015. "Superconvergence and a posteriori error estimates of the DG method for scalar hyperbolic problems on Cartesian grids," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 144-162.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:144-162
    DOI: 10.1016/j.amc.2015.04.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315005974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.04.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:144-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.