IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v256y2015icp203-221.html
   My bibliography  Save this article

Shape descriptors and mapping methods for full-field comparison of experimental to simulation data

Author

Listed:
  • Pasialis, V.
  • Lampeas, G.

Abstract

Validation of computational solid mechanics simulations requires full-field comparison methodologies between numerical and experimental results. The continuous Zernike and Chebyshev moment descriptors are applied to decompose data obtained from numerical simulations and experimental measurements, in order to reduce the high amount of ‘raw’ data to a fairly modest number of features and facilitate their comparisons. As Zernike moments are defined over a unit disk space, a geometric transformation (mapping) of rectangular to circular domain is necessary, before Zernike decomposition is applied to non-circular geometry. Four different mapping techniques are examined and their decomposition/reconstruction efficiency is assessed. A deep mathematical investigation to the reasons of the different performance of the four methods has been performed, comprising the effects of image mapping distortion and the numerical integration accuracy. Special attention is given to the Schwarz–Christoffel conformal mapping, which in most cases is proven to be highly efficient in image description when combined to Zernike moment descriptors. In cases of rectangular structures, it is demonstrated that despite the fact that Zernike moments are defined on a circular domain, they can be more effective even from Chebyshev moments, which are defined on rectangular domains, provided that appropriate mapping techniques have been applied.

Suggested Citation

  • Pasialis, V. & Lampeas, G., 2015. "Shape descriptors and mapping methods for full-field comparison of experimental to simulation data," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 203-221.
  • Handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:203-221
    DOI: 10.1016/j.amc.2014.12.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315000119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:203-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.