IDEAS home Printed from
   My bibliography  Save this article

Semiparametric competing risks analysis


  • José Canals-Cerdá
  • Shiferaw Gurmu


In this paper we analyse a semi-parametric estimation technique for competing risks models based on series expansion of the joint density of the unobserved heterogeneity components. This technique allows for unrestricted correlation among the risks. The finite sample behavior of the estimation technique is analysed in a Monte Carlo experiment using an empirically relevant data-generating process. The estimator performs well when compared with the Heckman--Singer estimator. Copyright Royal Economic Society 2007

Suggested Citation

  • José Canals-Cerdá & Shiferaw Gurmu, 2007. "Semiparametric competing risks analysis," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 193-215, July.
  • Handle: RePEc:ect:emjrnl:v:10:y:2007:i:2:p:193-215

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Karim M. Abadir & Jan R. Magnus, 2002. "Notation in econometrics: a proposal for a standard," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 76-90, June.
    3. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644, June.
    4. Banerjee, Anurag N. & Magnus, Jan R., 1999. "The sensitivity of OLS when the variance matrix is (partially) unknown," Journal of Econometrics, Elsevier, vol. 92(2), pages 295-323, October.
    5. Andrews, Donald W. K., 1998. "Hypothesis testing with a restricted parameter space," Journal of Econometrics, Elsevier, vol. 84(1), pages 155-199, May.
    6. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    7. Magnus, J.R., 1978. "Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix," Other publications TiSEM 388c2c25-0925-4b56-834a-7, Tilburg University, School of Economics and Management.
    8. Banerjee, Anurag N. & Magnus, Jan R., 2000. "On the sensitivity of the usual t- and F-tests to covariance misspecification," Journal of Econometrics, Elsevier, vol. 95(1), pages 157-176, March.
    9. Heijmans, R.D.H. & Magnus, J.R., 1986. "On the first-order efficiency and asymptotic normality of maximum likelihood estimators obtained from dependent observations," Other publications TiSEM b2fc9176-e950-4580-90e6-5, Tilburg University, School of Economics and Management.
    10. Magnus, Jan R., 1978. "Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix," Journal of Econometrics, Elsevier, vol. 7(3), pages 281-312, April.
    11. Shi, Lei & Wang, Xueren, 1999. "Local influence in ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 341-353, September.
    12. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Piu Banerjee & José J. Canals-Cerdá, 2012. "Credit risk analysis of credit card portfolios under economic stress conditions," Working Papers 12-18, Federal Reserve Bank of Philadelphia.
    2. James Marton & Patricia G. Ketsche & Mei Zhou, 2010. "SCHIP premiums, enrollment, and expenditures: a two state, competing risk analysis," Health Economics, John Wiley & Sons, Ltd., vol. 19(7), pages 772-791.
    3. José Canals-Cerdá & Shiferaw Gurmu, 2008. "Premarital Birth Among Young Hispanic Women: Evidence from Semiparametric Competing Risks Analysis," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 36(4), pages 421-440, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:10:y:2007:i:2:p:193-215. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.